622 research outputs found

    XAFS analyses of molten metal fluorides

    Get PDF
    X-ray absorption fine structure studies of molten metal fluorides containing the materials related to nuclear engineering are intensively summarized. By using XAFS spectra data of divalent and trivalent cation metal fluorides in molten state which have been collected by authors’ group for a few years, local structure have been extracted and discussed systematically in conjunction with other spectroscopic studies and numerical calculations. In molten divalent fluorides, tetrahedral coordination of fluorides around a cation is predominant. In the case of pure molten trivalent fluorides, structure with more than 6-coordination has been suggested in some cases, but octahedral coordination structure is much stabilized at heavier rare earth metal fluorides. By mixing with alkali metal fluorides, it is a general trend that inter-ionic distances keep constant, but coordination number of fluorides decreases. In experimental chapter, all the details of sample preparation, furnace installation, X-ray optics setups and data analyses procedures are explained. Finally, future expectations of XAFS technique are also suggested

    Electrical determination of the valence-band discontinuity in HgTe-CdTe heterojunctions

    Get PDF
    Current-voltage behavior is studied experimentally in a Hg0.78Cd0.22Te-CdTe-Hg0.78Cd0.22Te heterostructure grown by molecular beam epitaxy. At temperatures above 160 K, energy-band diagrams suggest that the dominant low-bias current is thermionic hole emission across the CdTe barrier layer. This interpretation yields a direct determination of 390±75 meV for the HgTe-CdTe valence-band discontinuity at 300 K. Similar analyses of current-voltage data taken at 190–300 K suggest that the valence-band offset decreases at low temperatures in this heterojunction

    Adaptive V2V routing with RSUs and gateway support to enhance network performance in VANET

    Get PDF
    In a VANET communication, link stability can neither be guaranteed nor make the established route link permanent due to the dynamic nature of the network. In V2V communication without the involvement of any infrastructural units like RSU access points or gateway, the probability of successful link establishment decreases when vehicle’s speed varies, red traffic light increases, cross-road increases and finally when the density of the running vehicles is sparse. To ensure route establishment and control route request broadcast in a sparse VANET with crossroad layout, RSUs are used in this paper for route discovery within one gateway zone when a next hop vehicle to relay the route request packet is unavailable. RSUs are static but the vehicles are dynamic in nature, so relying completely on RSU for forwarding data is not recommended because chances of link failure, link re-establishment, and handoff overhead will be high. So, in this paper, RSUs and Gateways are evoked for route discovery and data forwarding only when necessary. Moreover, a local route repair is attempted in this paper when the path length is high to reduce or avoid loss of buffered packets along the route and to maintain a more stable link with the help of RSUs

    Impurity effect on weak anti-localization in the topological insulator Bi2Te3

    Get PDF
    We study weak anti-localization (WAL) effect in topological insulator Bi2Te3 thin films at low temperatures. Two-dimensional WAL effect associated with surface carriers is revealed in the tilted magnetic field dependence of magneto-conductance. Our data demonstrates that the observed WAL is robust against deposition of non-magnetic Au impurities on the surface of the thin films. But it is quenched by deposition of magnetic Fe impurities which destroy the pi Berry's phase of the topological surface states. The magneto-conductance data of a 5 nm Bi2Te3 film suggests that a crossover from symplectic to unitary classes is observed with the deposition of Fe impurities.Comment: 4 pages, 3 figures. Corresponding author email address: [email protected]

    Model-based optimization of antibody galactosylation in CHO cell culture

    Get PDF
    Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch-to-batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. Process design therefore needs to consider the trade-off between preserving cellular health and productivity while enhancing antibody quality. In this work, we present a modeling platform that quantifies the impact of glycosylation precursor feeding - specifically that of galactose and uridine - on cellular growth, metabolism as well as antibody productivity and glycoform distribution. The platform has been parameterized using an initial training data set yielding an accuracy of ±5% with respect to glycoform distribution. It was then used to design an optimized feeding strategy that enhances the final concentration of galactosylated antibody in the supernatant by over 90% compared with the control without compromising the integral of viable cell density or final antibody titer. This work supports the implementation of Quality by Design towards higher-performing bioprocesses
    • …
    corecore