25 research outputs found

    Allergenic Lipid Transfer Proteins from Plant-Derived Foods Do Not Immunologically and Clinically Behave Homogeneously: The Kiwifruit LTP as a Model

    Get PDF
    BACKGROUND: Food allergy is increasingly common worldwide. Tools for allergy diagnosis measuring IgE improved much since allergenic molecules and microarrays started to be used. IgE response toward allergens belonging to the same group of molecules has not been comprehensively explored using such approach yet. OBJECTIVE: Using the model of lipid transfer proteins (LTPs) from plants as allergens, including two new structures, we sought to define how heterogeneous is the behavior of homologous proteins. METHODS: Two new allergenic LTPs, Act d 10 and Act c 10, have been identified in green (Actinidia deliciosa) and gold (Actinidia chinensis) kiwifruit (KF), respectively, using clinically characterized allergic patients, and their biochemical features comparatively evaluated by means of amino acid sequence alignments. Along with other five LTPs from peach, mulberry, hazelnut, peanut, mugwort, KF LTPs, preliminary tested positive for IgE, have been immobilized on a microarray, used for IgE testing 1,003 allergic subjects. Comparative analysis has been carried out. RESULTS: Alignment of Act d 10 primary structure with the other allergenic LTPs shows amino acid identities to be in a narrow range between 40 and 55%, with a number of substitutions making the sequences quite different from each other. Although peach LTP dominates the IgE immune response in terms of prevalence, epitope recognition driven by sequence heterogeneity has been recorded to be distributed in a wide range of behaviors. KF LTPs IgE positive results were obtained in a patient subset IgE positive for the peach LTP. Anyhow, the negative results on homologous molecules allowed us to reintroduce KF in patients' diet. CONCLUSION: The biochemical nature of allergenic molecule belonging to a group of homologous ones should not be taken as proof of immunological recognition as well. The availability of panels of homologous molecules to be tested using microarrays is valuable to address the therapeutic intervention

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Component resolved testing for allergic sensitization

    No full text

    Patterns of Clinical Reactivity in a Danish Cohort of Tree Nut Allergic Children, Adolescents, and Young Adults

    No full text
    BACKGROUND: Tree nut allergy is associated with severe reactions and poly-sensitization to other nuts and peanuts often occurs. There are regional differences in sensitization profiles that result in differences in clinical presentation. Denmark is located in a birch pollen endemic area, which could influence the allergy patterns due to pollen cross-sensitization. OBJECTIVE: This study aimed to investigate patterns of sensitization and clinical reactivity to tree nuts and peanuts and threshold levels for oral food challenges (OFCs) in a Danish cohort of tree nut allergic children, adolescents, and young adults. METHODS: Forty tree nut allergic subjects were assessed for clinical reactivity to six nuts, i.e., hazelnut, walnut, pistachio, cashew, almond, and peanut, by OFCs or convincing medical history of an immediate allergic reaction or tolerance. Clinical presentation and allergen-specific immunoglobulin E (sIgE) levels together with eliciting dose and rescue medication in OFCs were furthermore assessed. RESULTS: Allergy to two or more tree nuts was observed in most cases. Hazelnut-walnut dual allergy was common but not exclusively observed as concomitant allergies. Allergy to cashew was coincided in all but one of the assessed subjects with pistachio allergy. Half of all assessed subjects were allergic to peanuts. Oral symptoms followed by a skin reaction were the most common symptomatology that lead to OFC cessation and subjects often presented with symptoms from two or more organ systems. OFC threshold levels were within the same range, but cashew was distinguished from other nuts by causing allergic symptoms at the lowest dose. Clinical reactivity and the allergy patterns were to some extent reflected by sIgE levels and by correlations in sIgE between the nuts. CONCLUSIONS: In this Northern European cohort, subjects with clinically relevant tree nut allergy were generally allergic to two or more tree nuts and close to half of them also to peanuts. There were two distinct and independent allergic phenotypes; the majority of hazelnut allergic subjects were also allergic to walnut, and all but one subject with cashew allergy were dual allergic to pistachio. These findings are consistent with a strong sIgE correlation between hazelnut and walnut and a close to total sIgE correlation between cashew and pistachio
    corecore