258 research outputs found

    The Porcupine Survey: A Distributed Survey and WISE Followup

    Get PDF
    Spitzer post-cryogen observations to perform a moderate depth survey distributed around the sky are proposed. Field centers are chosen to be WISE brown dwarf candidates, which will typically be 160 µJy at 4.7 µm and randomly distributed around the sky. The Spitzer observations will give much higher sensitivity, higher angular resolution, and a time baseline to measure both proper motions and possibly parallaxes. The distance and velocity data obtained on the WISE brown dwarf candidates will greatly improve our knowledge of the mass and age distribution of brown dwarfs. The outer parts of the Spitzer fields surrounding the WISE positions will provide a deep survey in many narrow fields of view distributed around the sky, and the volume of this survey will contain many more distant brown dwarfs, and many extragalactic objects

    SPRITE: the Spitzer proposal review website

    Get PDF
    The Spitzer Science Center (SSC), located on the campus of the California Institute of Technology, supports the science operations of NASA's infrared Spitzer Space Telescope. The SSC issues an annual Call for Proposals inviting investigators worldwide to submit Spitzer Space Telescope proposals. The Spitzer Proposal Review Website (SPRITE) is a MySQL/PHP web database application designed to support the SSC proposal review process. Review panel members use the software to view, grade, and write comments about the proposals, and SSC support team members monitor the grading and ranking process and ultimately generate a ranked list of all the proposals. The software is also used to generate, edit, and email award letters to the proposers. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration

    MySQL/PHP web database applications for IPAC proposal submission

    Get PDF
    The Infrared Processing and Analysis Center (IPAC) is NASA's multi-mission center of expertise for long-wavelength astrophysics. Proposals for various IPAC missions and programs are ingested via MySQL/PHP web database applications. Proposers use web forms to enter coversheet information and upload PDF files related to the proposal. Upon proposal submission, a unique directory is created on the webserver into which all of the uploaded files are placed. The coversheet information is converted into a PDF file using a PHP extension called FPDF. The files are concatenated into one PDF file using the command-line tool pdftk and then forwarded to the review committee. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration

    A Database of Cepheid Distance Moduli and TRGB, GCLF, PNLF and SBF Data Useful for Distance Determinations

    Full text link
    We present a compilation of Cepheid distance moduli and data for four secondary distance indicators that employ stars in the old stellar populations: the planetary nebula luminosity function (PNLF), the globular cluster luminosity function (GCLF), the tip of the red giant branch (TRGB), and the surface brightness fluctuation (SBF) method. The database includes all data published as of July 15, 1999. The main strength of this compilation resides in all data being on a consistent and homogeneous system: all Cepheid distances are derived using the same calibration of the period-luminosity relation, the treatment of errors is consistent for all indicators, measurements which are not considered reliable are excluded. As such, the database is ideal for inter-comparing any of the distance indicators considered, or for deriving a Cepheid calibration to any secondary distance indicator. Specifically, the database includes: 1) Cepheid distances, extinctions and metallicities; 2) apparent magnitudes of the PNLF cutoff; 3) apparent magnitudes and colors of the turnover of the GCLF (both in the V- and B-bands); 4) apparent magnitudes of the TRGB (in the I-band) and V-I colors at and 0.5 magnitudes fainter than the TRGB; 5) apparent surface brightness fluctuation magnitudes I, K', K_short, and using the F814W filter with the HST/WFPC2. In addition, for every galaxy in the database we give reddening estimates from DIRBE/IRAS as well as HI maps, J2000 coordinates, Hubble and T-type morphological classification, apparent total magnitude in B, and systemic velocity. (Abridged)Comment: Accepted for publication in the Astrophysical Journal Supplement Series. Because of space limitations, the figures included are low resolution bitmap images. Original figures can be found at http://www.astro.ucla.edu/~laura/pub.ht

    The HST Key Project on the Extragalactic Distance Scale XXV. A Recalibration of Cepheid Distances to Type Ia Supernovae and the Value of the Hubble Constant

    Get PDF
    Cepheid-based distances to seven Type Ia supernovae (SNe)-host galaxies have been derived using the standard HST Key Project on the Extragalactic Distance Scale pipeline. For the first time, this allows for a transparent comparison of data accumulated as part of three different HST projects, the Key Project, the Sandage et al. Type Ia SNe program, and the Tanvir et al. Leo I Group study. Re-analyzing the Tanvir et al. galaxy and six Sandage et al. galaxies we find a mean (weighted) offset in true distance moduli of 0.12+/-0.07 mag -- i.e., 6% in linear distance -- in the sense of reducing the distance scale, or increasing H0. Adopting the reddening-corrected Hubble relations of Suntzeff et al. (1999), tied to a zero point based upon SNe~1990N, 1981B, 1998bu, 1989B, 1972E and 1960F and the photometric calibration of Hill et al. (1998), leads to a Hubble constant of H0=68+/-2(random)+/-5(systematic) km/s/Mpc. Adopting the Kennicutt et al. (1998) Cepheid period-luminosity-metallicity dependency decreases the inferred H0 by 4%. The H0 result from Type Ia SNe is now in good agreement, to within their respective uncertainties, with that from the Tully-Fisher and surface brightness fluctuation relations.Comment: Accepted for publication in The Astrophysical Journal. 62 pages, LaTeX, 9 Postscript figures. Also available at http://casa.colorado.edu/~bgibson/publications.htm

    The HST Key Project on the Extragalactic Distance Scale XXVI. The Calibration of Population II Secondary Distance Indicators and the Value of the Hubble Constant

    Get PDF
    A Cepheid-based calibration is derived for four distance indicators that utilize stars in the old stellar populations: the tip of the red giant branch (TRGB), the planetary nebula luminosity function (PNLF), the globular cluster luminosity function (GCLF) and the surface brightness fluctuation method (SBF). The calibration is largely based on the Cepheid distances to 18 spiral galaxies within cz =1500 km/s obtained as part of the HST Key Project on the Extragalactic Distance Scale, but relies also on Cepheid distances from separate HST and ground-based efforts. The newly derived calibration of the SBF method is applied to obtain distances to four Abell clusters in the velocity range between 3800 and 5000 km/s, observed by Lauer et al. (1998) using the HST/WFPC2. Combined with cluster velocities corrected for a cosmological flow model, these distances imply a value of the Hubble constant of H0 = 69 +/- 4 (random) +/- 6 (systematic) km/s/Mpc. This result assumes that the Cepheid PL relation is independent of the metallicity of the variable stars; adopting a metallicity correction as in Kennicutt et al. (1998), would produce a (5 +/- 3)% decrease in H0. Finally, the newly derived calibration allows us to investigate systematics in the Cepheid, PNLF, SBF, GCLF and TRGB distance scales.Comment: Accepted for publication in the Astrophysical Journal. 48 pages (including 13 figures and 4 tables), plus two additional tables in landscape format. Also available at http://astro.caltech.edu/~lff/pub.htm K' SBF magnitudes have been update

    The Variable Stars of the Draco Dwarf Spheroidal Galaxy - Revisited

    Get PDF
    We present a CCD survey of variable stars in the Draco dwarf spheroidal galaxy. This survey, which has the largest areal coverage since the original variable star survey by Baade & Swope, includes photometry for 270 RR Lyrae stars, 9 anomalous Cepheids, 2 eclipsing binaries, and 12 slow, irregular red variables, as well as 30 background QSOs. Twenty-six probable double-mode RR Lyrae stars were identified. Observed parameters, including mean V and I magnitudes, V amplitudes, and periods, have been derived. Photometric metallicities of the ab-type RR Lyrae stars were calculated according to the method of Jurcsik & Kovacs, yielding a mean metallicity of = -2.19 +/- 0.03. The well known Oosterhoff intermediate nature of the RR Lyrae stars in Draco is reconfirmed, although the double-mode RR Lyrae stars with one exception have properties similar to those found in Oosterhoff type II globular clusters. The period-luminosity relation of the anomalous Cepheids is rediscussed with the addition of the new Draco anomalous Cepheids.Comment: Accepted to AJ. 61 pages, 14 figures, 10 table

    The HST Key Project on the Extragalactic Distance Scale. XXVIII. Combining the Constraints on the Hubble Constant

    Full text link
    Since the launch of the Hubble Space Telescope nine years ago, Cepheid distances to 25 galaxies have been determined for the purpose of calibrating secondary distance indicators. A variety of these can now be calibrated, and the accompanying papers by Sakai, Kelson, Ferrarese, and Gibson employ the full set of 25 galaxies to consider the Tully-Fisher relation, the fundamental plane of elliptical galaxies, Type Ia supernovae, and surface brightness fluctuations. When calibrated with Cepheid distances, each of these methods yields a measurement of the Hubble constant and a corresponding measurement uncertainty. We combine these measurements in this paper, together with a model of the velocity field, to yield the best available estimate of the value of H_0 within the range of these secondary distance indicators and its uncertainty. The result is H_0 = 71 +/- 6 km/sec/Mpc. The largest contributor to the uncertainty of this 67% confidence level result is the distance of the Large Magellanic Cloud, which has been assumed to be 50 +/- 3 kpc
    • …
    corecore