505 research outputs found

    Microwave Absorption of Surface-State Electrons on Liquid 3^3He

    Full text link
    We have investigated the intersubband transitions of surface state electrons (SSE) on liquid 3^3He induced by microwave radiation at temperatures from 1.1 K down to 0.01 K. Above 0.4 K, the transition linewidth is proportional to the density of 3^3He vapor atoms. This proportionality is explained well by Ando's theory, in which the linewidth is determined by the electron - vapor atom scattering. However, the linewidth is larger than the calculation by a factor of 2.1. This discrepancy strongly suggests that the theory underestimates the electron - vapor atom scattering rate. At lower temperatures, the absorption spectrum splits into several peaks. The multiple peak structure is partly attributed to the spatial inhomogeneity of the static holding electric field perpendicular to the electron sheet.Comment: 15 pages, 7 figures, submitted to J. Phys. Soc. Jp

    Superfluidity of 4^4He Confined in Nano-Porous Media

    Full text link
    We have examined superfluid properties of 4^4He confined to a nano-porous Gelsil glass that has nanopores 2.5 nm in diameter. The pressure-temperature phase diagram was determined by torsional oscillator, heat capacity and pressure studies. The superfluid transition temperature TcT_{\mathrm c} approaches zero at 3.4 MPa, indicating a novel "quantum" superfluid transition. By heat capacity measurements, the nonsuperfluid phase adjacent to the superfluid and solid phases is identified to be a nanometer-scale, localized Bose condensation state, in which global phase coherence is destroyed. At high pressures, the superfluid density has a TT-linear term, and TcT_{\mathrm c} is proportional to the zero-temperature superfluid density. These results strongly suggest that phase fluctuations in the superfluid order parameter play a dominant role on the phase diagram and superfluid properties.Comment: 6 Pages, 6 Figures, Submitted to "Helium: 100 years", Special Issue of Low Temperature Physic

    Minimal Model for Disorder-induced Missing Moment of Inertia in Solid 4^4He

    Full text link
    The absence of a missing moment inertia in clean solid 4^4He suggests that the minimal experimentally relevant model is one in which disorder induces superfluidity in a bosonic lattice. To this end, we explore the relevance of the disordered Bose-Hubbard model in this context. We posit that a clean array 4^4He atoms is a self-generated Mott insulator, that is, the 4^4He atoms constitute the lattice as well as the `charge carriers'. With this assumption, we are able to interpret the textbook defect-driven supersolids as excitations of either the lower or upper Hubbard bands. In the experiments at hand, disorder induces a closing of the Mott gap through the generation of mid-gap localized states at the chemical potential. Depending on the magnitude of the disorder, we find that the destruction of the Mott state takes place for d+z>4d+z>4 either through a Bose glass phase (strong disorder) or through a direct transition to a superfluid (weak disorder). For d+z<4d+z<4, disorder is always relevant. The critical value of the disorder that separates these two regimes is shown to be a function of the boson filling, interaction and the momentum cut off. We apply our work to the experimentally observed enhancement 3^3He impurities has on the onset temperature for the missing moment of inertia. We find quantitative agreement with experimental trends.Comment: 9 pages, 5 figures: Extended version of previous paper in which the pase diagram for the disordered Bose-Hubbard model is computed using mean-field theory and one-loop RG. The criterion for the Bose glass is derived explicitly. (a few typos are corrected

    Superfluidity of ⁴He confined in nanoporous media

    No full text
    We have examined superfluid properties of ⁴He confined to a nanoporous Gelsil glass that has nanopores 2.5 nm in diameter. The pressure–temperature phase diagram was determined by torsional oscillator, heat capacity and pressure studies. The superfluid transition temperature Tc approaches zero at 3.4 MPa, indicating a novel quantum superfluid transition. By heat capacity measurements, the nonsuperfluid phase adjacent to the superfluid and solid phases is identified to be a nanometer-scale, localized Bose condensation state, in which global phase coherence is destroyed. At high pressures, the superfluid density has a T-linear term, and Tc is proportional to the zero-temperature superfluid density. These results strongly suggest that phase fluctuations in the superfluid order parameter play a dominant role on the phase diagram and superfluid properties

    Rotation-induced 3D vorticity in 4He superfluid films adsorbed on a porous glass

    Full text link
    Detailed study of torsional oscillator experiments under steady rotation up to 6.28 rad/sec is reported for a 4He superfluid monolayer film formed in 1 micrometer-pore diameter porous glass. We found a new dissipation peak with the height being in proportion to the rotation speed, which is located to the lower temperature than the vortex pair unbinding peak observed in the static state. We propose that 3D coreless vortices ("pore vortices") appear under rotation to explain this new peak. That is, the new peak originates from dissipation close to the pore vortex lines, where large superfluid velocity shifts the vortex pair unbinding dissipation to lower temperature. This explanation is confirmed by observation of nonlinear effects at high oscillation amplitudes.Comment: 4pages, 5figure

    Albumin-based hydrogels for regenerative engineering and cell transplantation.

    Get PDF
    Albumin, the most abundant plasma protein in mammals, is a versatile and easily obtainable biomaterial. It is pH and temperature responsive, dissolvable in high concentrations and gels readily in defined conditions. This versatility, together with its inexpensiveness and biocompatibility, makes albumin an attractive biomaterial for biomedical research and therapeutics. So far, clinical research in albumin has centered mainly on its use as a carrier molecule or nanoparticle to improve drug pharmacokinetics and delivery to target sites. In contrast, research in albumin-based hydrogels is less established albeit growing in interest over recent years. In this minireview, we report current literature and critically discuss the synthesis, mechanical properties, biological effects and uses, biodegradability and cost of albumin hydrogels as a xeno-free, customizable, and transplantable construct for tissue engineering and regenerative medicine.EPSRC Isaac Newton Trust Rosetrees Trus

    Low-Temperature Mobility of Surface Electrons and Ripplon-Phonon Interaction in Liquid Helium

    Full text link
    The low-temperature dc mobility of the two-dimensional electron system localized above the surface of superfluid helium is determined by the slowest stage of the longitudinal momentum transfer to the bulk liquid, namely, by the interaction of surface and volume excitations of liquid helium, which rapidly decreases with temperature. Thus, the temperature dependence of the low-frequency mobility is \mu_{dc} = 8.4x10^{-11}n_e T^{-20/3} cm^4 K^{20/3}/(V s), where n_e is the surface electron density. The relation T^{20/3}E_\perp^{-3} << 2x10^{-7} between the pressing electric field (in kV/cm) and temperature (in K) and the value \omega < 10^8 T^5 K^{-5}s^{-1} of the driving-field frequency have been obtained, at which the above effect can be observed. In particular, E_\perp = 1 kV/cm corresponds to T < 70 mK and \omega/2\pi < 30 Hz.Comment: 4 pages, 1 figur

    Magneto-shear modes and a.c. dissipation in a two-dimensional Wigner crystal

    Full text link
    The a.c. response of an unpinned and finite 2D Wigner crystal to electric fields at an angular frequency ω\omega has been calculated in the dissipative limit, ωτ1\omega \tau \ll 1, where τ1\tau ^{-1} is the scattering rate. For electrons screened by parallel electrodes, in zero magnetic field the long-wavelength excitations are a diffusive longitudinal transmission line mode and a diffusive shear mode. A magnetic field couples these modes together to form two new magneto-shear modes. The dimensionless coupling parameter β=2(ct/cl)σxy/σxx\beta =2(c_{t}/c_{l})|\sigma_{xy}/\sigma_{xx}| where ctc_{t} and clc_{l} are the speeds of transverse and longitudinal sound in the collisionless limit and σxy\sigma_{xy} and σxx\sigma_{xx} are the tensor components of the magnetoconductivity. For β1\beta \geqslant 1, both the coupled modes contribute to the response of 2D electrons in a Corbino disk measurement of magnetoconductivity. For β1\beta \gg 1, the electron crystal rotates rigidly in a magnetic field. In general, both the amplitude and phase of the measured a.c. currents are changed by the shear modulus. In principle, both the magnetoconductivity and the shear modulus can be measured simultaneously.Comment: REVTeX, 7 pp., 4 eps figure
    corecore