14,471 research outputs found

    Metallic characteristics in superlattices composed of insulators, NdMnO3/SrMnO3/LaMnO3

    Full text link
    We report on the electronic properties of superlattices composed of three different antiferromagnetic insulators, NdMnO3/SrMnO3/LaMnO3 grown on SrTiO3 substrates. Photoemission spectra obtained by tuning the x-ray energy at the Mn 2p -> 3d edge show a Fermi cut-off, indicating metallic behavior mainly originating from Mn e_g electrons. Furthermore, the density of states near the Fermi energy and the magnetization obey a similar temperature dependence, suggesting a correlation between the spin and charge degrees of freedom at the interfaces of these oxides

    Self-tuning of threshold for a two-state system

    Full text link
    A two-state system (TSS) under time-periodic perturbations (to be regarded as input signals) is studied in connection with self-tuning (ST) of threshold and stochastic resonance (SR). By ST, we observe the improvement of signal-to-noise ratio (SNR) in a weak noise region. Analytic approach to a tuning equation reveals that SNR improvement is possible also for a large noise region and this is demonstrated by Monte Carlo simulations of hopping processes in a TSS. ST and SR are discussed from a little more physical point of energy transfer (dissipation) rate, which behaves in a similar way as SNR. Finally ST is considered briefly for a double-well potential system (DWPS), which is closely related to the TSS

    20 K superconductivity in heavily electron doped surface layer of FeSe bulk crystal

    Full text link
    A superconducting transition temperature Tc as high as 100 K was recently discovered in 1 monolayer (1ML) FeSe grown on SrTiO3 (STO). The discovery immediately ignited efforts to identify the mechanism for the dramatically enhanced Tc from its bulk value of 7 K. Currently, there are two main views on the origin of the enhanced Tc; in the first view, the enhancement comes from an interfacial effect while in the other it is from excess electrons with strong correlation strength. The issue is controversial and there are evidences that support each view. Finding the origin of the Tc enhancement could be the key to achieving even higher Tc and to identifying the microscopic mechanism for the superconductivity in iron-based materials. Here, we report the observation of 20 K superconductivity in the electron doped surface layer of FeSe. The electronic state of the surface layer possesses all the key spectroscopic aspects of the 1ML FeSe on STO. Without any interface effect, the surface layer state is found to have a moderate Tc of 20 K with a smaller gap opening of 4 meV. Our results clearly show that excess electrons with strong correlation strength alone cannot induce the maximum Tc, which in turn strongly suggests need for an interfacial effect to reach the enhanced Tc found in 1ML FeSe/STO.Comment: 5 pages, 4 figure

    A performance comparison of the contiguous allocation strategies in 3D mesh connected multicomputers

    Get PDF
    The performance of contiguous allocation strategies can be significantly affected by the distribution of job execution times. In this paper, the performance of the existing contiguous allocation strategies for 3D mesh multicomputers is re-visited in the context of heavy-tailed distributions (e.g., a Bounded Pareto distribution). The strategies are evaluated and compared using simulation experiments for both First-Come-First-Served (FCFS) and Shortest-Service-Demand (SSD) scheduling strategies under a variety of system loads and system sizes. The results show that the performance of the allocation strategies degrades considerably when job execution times follow a heavy-tailed distribution. Moreover, SSD copes much better than FCFS scheduling strategy in the presence of heavy-tailed job execution times. The results also show that the strategies that depend on a list of allocated sub-meshes for both allocation and deallocation have lower allocation overhead and deliver good system performance in terms of average turnaround time and mean system utilization

    Growth Dynamics of Photoinduced Domains in Two-Dimensional Charge-Ordered Conductors Depending on Stabilization Mechanisms

    Full text link
    Photoinduced melting of horizontal-stripe charge orders in quasi-two-dimensional organic conductors \theta-(BEDT-TTF)2RbZn(SCN)4[BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] and \alpha-(BEDT-TTF)2I3 is investigated theoretically. By numerically solving the time-dependent Schr\"odinger equation, we study the photoinduced dynamics in extended Peierls-Hubbard models on anisotropic triangular lattices within the Hartree-Fock approximation. The melting of the charge order needs more energy for \theta-(BEDT-TTF)2RbZn(SCN)4 than for \alpha-(BEDT-TTF)2I3, which is a consequence of the larger stabilization energy in \theta-(BEDT-TTF)2RbZn(SCN)4. After local photoexcitation in the charge ordered states, the growth of a photoinduced domain shows anisotropy. In \theta-(BEDT-TTF)2RbZn(SCN)4, the domain hardly expands to the direction perpendicular to the horizontal-stripes. This is because all the molecules on the hole-rich stripe are rotated in one direction and those on the hole-poor stripe in the other direction. They modulate horizontally connected transfer integrals homogeneously, stabilizing the charge order stripe by stripe. In \alpha-(BEDT-TTF)2I3, lattice distortions locally stabilize the charge order so that it is easily weakened by local photoexcitation. The photoinduced domain indeed expands in the plane. These results are consistent with recent observation by femtosecond reflection spectroscopy.Comment: 9 pages, 8 figures, to appear in J. Phys. Soc. Jpn. Vol. 79 (2010) No.

    Signatures of Electronic Correlations in Optical Properties of LaFeAsO1x_{1-x}Fx_x

    Full text link
    Spectroscopic ellipsometry is used to determine the dielectric function of the superconducting LaFeAsO0.9_{0.9}F0.1_{0.1} (TcT_c = 27 K) and undoped LaFeAsO polycrystalline samples in the wide range 0.01-6.5 eV at temperatures 10 T\leq T \leq 350 K. The free charge carrier response in both samples is heavily damped with the effective carrier density as low as 0.040±\pm0.005 electrons per unit cell. The spectral weight transfer in the undoped LaFeAsO associated with opening of the pseudogap at about 0.65 eV is restricted at energies below 2 eV. The spectra of superconducting LaFeAsO0.9_{0.9}F0.1_{0.1} reveal a significant transfer of the spectral weight to a broad optical band above 4 eV with increasing temperature. Our data may imply that the electronic states near the Fermi surface are strongly renormalized due to electron-phonon and/or electron-electron interactions.Comment: 4 pages, 4 figures, units in Fig.2 adde

    Quasiparticle Interference on the Surface of Topological Crystalline Insulator Pb(1-x)Sn(x)Se

    Full text link
    Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe the surface states on (001) Pb1x_{1-x}Snx_{x}Se in the topologically non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed quasiparticle interference with STM on the surface of the topological crystalline insulator and demonstrated that the measured interference can be understood from ARPES studies and a simple band structure model. Furthermore, our findings support the fact that Pb0.77_{0.77}Sn0.23_{0.23}Se and PbSe have different topological nature.Comment: 5 pages, 4 figure

    Finite-Temperature Properties across the Charge Ordering Transition -- Combined Bosonization, Renormalization Group, and Numerical Methods

    Full text link
    We theoretically describe the charge ordering (CO) metal-insulator transition based on a quasi-one-dimensional extended Hubbard model, and investigate the finite temperature (TT) properties across the transition temperature, TCOT_{\rm CO}. In order to calculate TT dependence of physical quantities such as the spin susceptibility and the electrical resistivity, both above and below TCOT_{\rm CO}, a theoretical scheme is developed which combines analytical methods with numerical calculations. We take advantage of the renormalization group equations derived from the effective bosonized Hamiltonian, where Lanczos exact diagonalization data are chosen as initial parameters, while the CO order parameter at finite-TT is determined by quantum Monte Carlo simulations. The results show that the spin susceptibility does not show a steep singularity at TCOT_{\rm CO}, and it slightly increases compared to the case without CO because of the suppression of the spin velocity. In contrast, the resistivity exhibits a sudden increase at TCOT_{\rm CO}, below which a characteristic TT dependence is observed. We also compare our results with experiments on molecular conductors as well as transition metal oxides showing CO.Comment: 9 pages, 8 figure
    corecore