8 research outputs found

    Exploring rare cellular activity in more than one million cells by a transscale scope

    Get PDF
    In many phenomena of biological systems, not a majority, but a minority of cells act on the entire multicellular system causing drastic changes in the system properties. To understand the mechanisms underlying such phenomena, it is essential to observe the spatiotemporal dynamics of a huge population of cells at sub-cellular resolution, which is difficult with conventional tools such as microscopy and flow cytometry. Here, we describe an imaging system named AMATERAS that enables optical imaging with an over-one-centimeter field-of-view and a-few-micrometer spatial resolution. This trans-scale-scope has a simple configuration, composed of a low-power lens for machine vision and a hundred-megapixel image sensor. We demonstrated its high cell-throughput, capable of simultaneously observing more than one million cells. We applied it to dynamic imaging of calcium ions in HeLa cells and cyclic-adenosine-monophosphate in Dictyostelium discoideum, and successfully detected less than 0.01% of rare cells and observed multicellular events induced by these cells

    FAST imaging of whole brains

    No full text

    Advanced therapy medicinal products for eye diseases: Goals and challenges

    Get PDF
    Producción CientíficaThe concept of advanced therapy medicinal products (ATMPs) encompasses novel kinds of medicines for human use that are based on genes, cells or tissues. These intend to offer not only regeneration, but complete functional recovery of diseased tissues and organs using different strategies. Gene therapy, cell therapy and tissue engineering are the main areas in which promising advanced therapies are emerging. The eye is a very complex organ whose main structures, the cornea and the retina, play a pivotal role in maintaining normal vision, as severe alterations in these tissues can lead to blindness. Ocular tissues are starting to benefit from ATMPs by fighting against the enormous complexity and devastating potential of many ocular diseases. However, developments arising from this field of work face important challenges related to vectors to deliver drugs and genetic material to target tissues, suitable biomaterials to prepare cell scaffolds and cell stemness, among others—not to mention the complicated legislation around ATMPs, the complexity in production and quality control and the absence of standardized protocols. The purpose of this Special Issue is to serve as an overview of the current progress in the application of cell and gene therapies, as well as tissue engineering to restore functionality in diseased ocular structures, and the challenges they deal with in order to get to patients.Ministerio de Economía y Competitividad e Instituto de Salud Carlos III - FEDER (FIS PI20/0317 e ICI21-00010)Junta de Andalucía - Consejería de Salud y Familias (PI-0086-2020)Junta de Andalucía - Consejería de Transformación Económica, Industria, Conocimiento y Universidades- FEDER (B-CTS-504-UGR20
    corecore