926 research outputs found

    From photos to sketches-how humans and deep neural networks process objects across different levels of visual abstraction

    Get PDF
    Line drawings convey meaning with just a few strokes. Despite strong simplifications, humans can recognize objects depicted in such abstracted images without effort. To what degree do deep convolutional neural networks (CNNs) mirror this human ability to generalize to abstracted object images? While CNNs trained on natural images have been shown to exhibit poor classification performance on drawings, other work has demonstrated highly similar latent representations in the networks for abstracted and natural images. Here, we address these seemingly conflicting findings by analyzing the activation patterns of a CNN trained on natural images across a set of photographs, drawings, and sketches of the same objects and comparing them to human behavior. We find a highly similar representational structure across levels of visual abstraction in early and intermediate layers of the network. This similarity, however, does not translate to later stages in the network, resulting in low classification performance for drawings and sketches. We identified that texture bias in CNNs contributes to the dissimilar representational structure in late layers and the poor performance on drawings. Finally, by fine-tuning late network layers with object drawings, we show that performance can be largely restored, demonstrating the general utility of features learned on natural images in early and intermediate layers for the recognition of drawings. In conclusion, generalization to abstracted images, such as drawings, seems to be an emergent property of CNNs trained on natural images, which is, however, suppressed by domain-related biases that arise during later processing stages in the network

    Brain2Pix: Fully convolutional naturalistic video reconstruction from brain activity

    Get PDF
    Reconstructing complex and dynamic visual perception from brain activity remains a major challenge in machine learning applications to neuroscience. Here we present a new method for reconstructing naturalistic images and videos from very large single-participant functional magnetic resonance data that leverages the recent success of image-to-image transformation networks. This is achieved by exploiting spatial information obtained from retinotopic mappings across the visual system. More specifically, we first determine what position each voxel in a particular region of interest would represent in the visual field based on its corresponding receptive field location. Then, the 2D image representation of the brain activity on the visual field is passed to a fully convolutional image-to-image network trained to recover the original stimuli using VGG feature loss with an adversarial regularizer. In our experiments, we show that our method offers a significant improvement over existing video reconstruction technique

    Probing renal blood volume with magnetic resonance imaging

    Get PDF
    Damage to the kidney substantially reduces life expectancy. Renal tissue hypoperfusion and hypoxia are key elements in the pathophysiology of acute kidney injury and its progression to chronic kidney disease. In vivo assessment of renal haemodynamics and tissue oxygenation remains a challenge. Blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI) is sensitive to changes in the effective transversal relaxation time (T(2)*) in vivo, is non-invasive and indicative of renal tissue oxygenation. However, the renal T(2)* to tissue pO(2) relationship is not governed exclusively by renal blood oxygenation, but is affected by physiological confounders with alterations in renal blood volume fraction (BVf) being of particular relevance. To decipher this interference probing renal BVf is essential for the pursuit of renal MR oximetry. Superparamagnetic iron oxide nanoparticle (USPIO) preparations can be used as MRI visible blood pool markers for detailing alterations in BVf. This review promotes the opportunities of MRI based assessment of renal BVf. Following an outline on the specifics of renal oxygenation and perfusion, changes in renal BVf upon interventions and their potential impact on renal T(2)* are discussed. We also describe the basic principles of renal BVf assessment using ferumoxytol enhanced MRI in the equilibrium concentration regime. We demonstrate that ferumoxytol does not alter control of renal haemodynamics and oxygenation. Preclinical applications of ferumoxytol enhanced renal MRI as well as considerations for its clinical implementation for examining renal BVf changes are provided alongside practical considerations. Finally, we explore the future directions of MRI based assessment of renal BVf

    Lack of the Sodium-Driven Chloride Bicarbonate Exchanger NCBE Impairs Visual Function in the Mouse Retina

    Get PDF
    Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10), a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pHi) and chloride concentration ([Cl-]i) in neurons. Here we show that NCBE is strongly expressed in the retina. As GABAA receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pHi regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function

    Detailing the relation between renal T(2)* and renal tissue pO2 using an integrated approach of parametric magnetic resonance imaging and invasive physiological measurements

    Get PDF
    OBJECTIVES: This study was designed to detail the relation between renal T2* and renal tissue pO2 using an integrated approach that combines parametric magnetic resonance imaging (MRI) and quantitative physiological measurements (MR-PHYSIOL. MATERIALS AND METHODS: Experiments were performed in 21 male Wistar rats. In vivo modulation of renal hemodynamics and oxygenation was achieved by brief periods of aortic occlusion, hypoxia, and hyperoxia. Renal perfusion pressure (RPP), renal blood flow (RBF), local cortical and medullary tissue pO2, and blood flux were simultaneously recorded together with T2*, T2 mapping, and magnetic resonance-based kidney size measurements (MR-PHYSIOL). Magnetic resonance imaging was carried out on a 9.4-T small-animal magnetic resonance system. Relative changes in the invasive quantitative parameters were correlated with relative changes in the parameters derived from MRI using Spearman analysis and Pearson analysis. RESULTS: Changes in T2* qualitatively reflected tissue pO2 changes induced by the interventions. T2* versus pO2 Spearman rank correlations were significant for all interventions, yet quantitative translation of T2*/pO2 correlations obtained for one intervention to another intervention proved not appropriate. The closest T2*/pO2 correlation was found for hypoxia and recovery. The interlayer comparison revealed closest T2*/pO2 correlations for the outer medulla and showed that extrapolation of results obtained for one renal layer to other renal layers must be made with due caution. For T2* to RBF relation, significant Spearman correlations were deduced for all renal layers and for all interventions. T2*/RBF correlations for the cortex and outer medulla were even superior to those between T2* and tissue pO2. The closest T2*/RBF correlation occurred during hypoxia and recovery. Close correlations were observed between T2* and kidney size during hypoxia and recovery and for occlusion and recovery. In both cases, kidney size correlated well with renal vascular conductance, as did renal vascular conductance with T2*. Our findings indicate that changes in T2* qualitatively mirror changes in renal tissue pO2 but are also associated with confounding factors including vascular volume fraction and tubular volume fraction. CONCLUSIONS: Our results demonstrate that MR-PHYSIOL is instrumental to detail the link between renal tissue pO2 and T2* in vivo. Unravelling the link between regional renal T2* and tissue pO2, including the role of the T2* confounding parameters vascular and tubular volume fraction and oxy-hemoglobin dissociation curve, requires further research. These explorations are essential before the quantitative capabilities of parametric MRI can be translated from experimental research to improved clinical understanding of hemodynamics/oxygenation in kidney disorders

    Detailing renal hemodynamics and oxygenation in rats by a combined near-infrared spectroscopy and invasive probe approach

    Get PDF
    We hypothesize that combining quantitative near-infrared spectroscopy (NIRS) with established invasive techniques will enable advanced insights into renal hemodynamics and oxygenation in small animal models. We developed a NIRS technique to monitor absolute values of oxygenated and deoxygenated hemoglobin and of oxygen saturation of hemoglobin within the renal cortex of rats. This NIRS technique was combined with invasive methods to simultaneously record renal tissue oxygen tension and perfusion. The results of test procedures including occlusions of the aorta or the renal vein, hyperoxia, hypoxia, and hypercapnia demonstrated that the combined approach, by providing different but complementary information, enables a more comprehensive characterization of renal hemodynamics and oxygenation

    Diffusion-weighted renal MRI at 9.4 Tesla using RARE to improve anatomical integrity

    Get PDF
    Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive imaging technique sensitive to tissue water movement. By enabling a discrimination between tissue properties without the need of contrast agent administration, DWI is invaluable for probing tissue microstructure in kidney diseases. DWI studies commonly make use of single-shot Echo-Planar Imaging (ss-EPI) techniques that are prone to suffering from geometric distortion. The goal of the present study was to develop a robust DWI technique tailored for preclinical magnetic resonance imaging (MRI) studies that is free of distortion and sensitive to detect microstructural changes. Since fast spin-echo imaging techniques are less susceptible to B(0) inhomogeneity related image distortions, we introduced a diffusion sensitization to a split-echo Rapid Acquisition with Relaxation Enhancement (RARE) technique for high field preclinical DWI at 9.4 T. Validation studies in standard liquids provided diffusion coefficients consistent with reported values from the literature. Split-echo RARE outperformed conventional ss-EPI, with ss-EPI showing a 3.5-times larger border displacement (2.60 vs. 0.75) and a 60% higher intra-subject variability (cortex = 74%, outer medulla = 62% and inner medulla = 44%). The anatomical integrity provided by the split-echo RARE DWI technique is an essential component of parametric imaging on the way towards robust renal tissue characterization, especially during kidney disease

    High temporal resolution parametric MRI monitoring of the initial ischemia/reperfusion phase in experimental acute kidney injury

    Get PDF
    Ischemia/reperfusion (I/R) injury, a consequence of kidney hypoperfusion or temporary interruption of blood flow is a common cause of acute kidney injury (AKI). There is an unmet need to better understand the mechanisms operative during the initial phase of ischemic AKI. Non-invasive parametric magnetic resonance imaging (MRI) may elucidate spatio-temporal pathophysiological changes in the kidney by monitoring the MR relaxation parameters T* and T, which are known to be sensitive to blood oxygenation. The aim of our study was to establish the technical feasibility of fast continuous T*/T mapping throughout renal I/R. MRI was combined with a remotely controlled I/R model and a segmentation model based semi-automated quantitative analysis. This technique enabled the detailed assessment of changes in all kidney regions during ischemia and early reperfusion. Significant changes in T* and T were observed shortly after induction of renal ischemia and during the initial reperfusion phase. Our study demonstrated for the first time that continuous and high temporal resolution parametric MRI is feasible for monitoring and characterization of I/R induced AKI in rats. This technique may help in the identification of the timeline of key events responsible for development of renal damage in hypoperfusion-induced AKI

    Experimental MRI monitoring of renal blood volume fraction variations en route to renal magnetic resonance oximetry

    Get PDF
    Diagnosis of early-stage acute kidney injury (AKI) will benefit from a timely identification of local tissue hypoxia. Renal tissue hypoxia is an early feature in AKI pathophysiology, and renal oxygenation is increasingly being assessed through T(2)*-weighted magnetic resonance imaging (MRI). However, changes in renal blood volume fraction (BVf) confound renal T(2)*. The aim of this study was to assess the feasibility of intravascular contrast-enhanced MRI for monitoring renal BVf during physiological interventions that are concomitant with variations in BVf and to explore the possibility of correcting renal T(2)* for BVf variations. A dose-dependent study of the contrast agent ferumoxytol was performed in rats. BVf was monitored throughout short-term occlusion of the renal vein, which is known to markedly change renal blood partial pressure of O(2) and BVf. BVf calculated from MRI measurements was used to estimate oxygen saturation of hemoglobin (SO(2)). BVf and SO(2) were benchmarked against cortical data derived from near-infrared spectroscopy. As estimated from magnetic resonance parametric maps of T(2) and T(2)*, BVf was shown to increase, whereas SO(2) was shown to decline during venous occlusion (VO). This observation could be quantitatively reproduced in test-retest scenarios. Changes in BVf and SO(2) were in good agreement with data obtained from near-infrared spectroscopy. Our findings provide motivation to advance multiparametric MRI for studying AKIs, with the ultimate goal of translating MRI-based renal BVf mapping into clinical practice en route noninvasive renal magnetic resonance oximetry as a method of assessing AKI and progression to chronic damage
    • …
    corecore