33 research outputs found
The random case of Conley's theorem: III. Random semiflow case and Morse decomposition
In the first part of this paper, we generalize the results of the author
\cite{Liu,Liu2} from the random flow case to the random semiflow case, i.e. we
obtain Conley decomposition theorem for infinite dimensional random dynamical
systems. In the second part, by introducing the backward orbit for random
semiflow, we are able to decompose invariant random compact set (e.g. global
random attractor) into random Morse sets and connecting orbits between them,
which generalizes the Morse decomposition of invariant sets originated from
Conley \cite{Con} to the random semiflow setting and gives the positive answer
to an open problem put forward by Caraballo and Langa \cite{CL}.Comment: 21 pages, no figur
Random attractions and bifurcation for the classical Rayleigh–van der Pol equations with small noise
Non-Standard Errors
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants
Recommended from our members
Non-standard errors
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants