56 research outputs found

    Predictive Processing in Poetic Language: Event-Related Potentials Data on Rhythmic Omissions in Metered Speech

    Get PDF
    Predictions during language comprehension are currently discussed from many points of view. One area where predictive processing may play a particular role concerns poetic language that is regularized by meter and rhyme, thus allowing strong predictions regarding the timing and stress of individual syllables. While there is growing evidence that these prosodic regularities influence language processing, less is known about the potential influence of prosodic preferences (binary, strong-weak patterns) on neurophysiological processes. To this end, the present electroencephalogram (EEG) study examined whether the predictability of strong and weak syllables within metered speech would differ as a function of meter (trochee vs. iamb). Strong, i.e., accented positions within a foot should be more predictable than weak, i.e., unaccented positions. Our focus was on disyllabic pseudowords that solely differed between trochaic and iambic structure, with trochees providing the preferred foot in German. Methodologically, we focused on the omission Mismatch Negativity (oMMN) that is elicited when an anticipated auditory stimulus is omitted. The resulting electrophysiological brain response is particularly interesting because its elicitation does not depend on a physical stimulus. Omissions in deviant position of a passive oddball paradigm occurred at either first- or second-syllable position of the aforementioned pseudowords, resulting in a 2-by-2 design with the factors foot type and omission position. Analyses focused on the mean oMMN amplitude and latency differences across the four conditions. The result pattern was characterized by an interaction of the effects of foot type and omission position for both amplitudes and latencies. In first position, omissions resulted in larger and earlier oMMNs for trochees than for iambs. In second position, omissions resulted in larger oMMNs for iambs than for trochees, but the oMMN latency did not differ. The results suggest that omissions, particularly in initial position, are modulated by a trochaic preference in German. The preferred strong-weak pattern may have strengthened the prosodic prediction, especially for matching, trochaic stimuli, such that the violation of this prediction led to an earlier and stronger prediction error. Altogether, predictive processing seems to play a particular role in metered speech, especially if the meter is based on the preferred foot type

    Pressure-induced transition from the dynamic to static Jahn-Teller effect in (Ph4_{4}P)2_{2}IC60_{60}

    Full text link
    High-pressure infrared transmission measurements on \PhC60 were performed up to 9 GPa over a broad frequency range (200 - 20000 cm1^{-1}) to monitor the vibrational and electronic/vibronic excitations under pressure. The four fundamental T1u_{1u} modes of \C60a\ are split into doublets already at the lowest applied pressure and harden with increasing pressure. Several cation modes and fullerene-related modes split into doublets at around 2 GPa, the most prominent one being the G1u_{1u} mode. The splitting of the vibrational modes can be attributed to the transition from the dynamic to static Jahn-Teller effect, caused by steric crowding at high pressure. Four absorption bands are observed in the NIR-VIS frequency range. They are discussed in terms of transitions between LUMO electronic states in \C60a, which are split because of the Jahn-Teller distortion and can be coupled with vibrational modes. Various distortions and the corresponding symmetry lowering are discussed. The observed redshift of the absorption bands indicates that the splitting of the LUMO electronic states is reduced upon pressure application.Comment: 10 pages, 17 figure

    At the heart of optimal reading experiences: Cardiovascular activity and flow experiences in fiction reading

    Get PDF
    Fiction reading is a popular leisure activity associated with a variety of pleasurable experiences, including suspense, narrative transportation, and—as indicated by recent empirical studies—also flow. In the context of fiction reading, flow—generally defined as a pleasurable state of mind experienced during an optimally stimulating activity—is specifically related to an optimal balance between text-driven challenges and the reader’s capabilities in constructing a mental story model. The experimental study reported here focused on the psychophysiological underpinnings of flow in the reading context. Cardiovascular data were collected from 84 participants both during a relaxation baseline prior to reading and during reading. Participants were randomly assigned to read one of three versions of a chapter from Homer’s Odyssey. According to statistical readability indices, these versions were low, intermediate, or high in readability, and hence in cognitive challenge. Flow was measured immediately after reading with a self-report scale that was tailored to assess reading-specific flow experiences. Regression analyses revealed that cardiovascular activation patterns measured before reading that are reflective of parasympathetic dominance—that is, an inner state associated with relaxation and cognitive fluency—moderated flow experiences during reading. In line with the stipulations of flow theory in regard to matching challenge levels being the key determinant for flow, this pattern supported subsequent flow experiences only in response to text versions of high or intermediate, but not of low cognitive challenge. Differences in cardiac vagal tone during reading were, however, not sensitive to our experimental modifications and not predictive of flow experiences

    Bandwidth Allocation and Reservation - End-to-End Specification

    Get PDF
    The Bandwidth Allocation and Reservation (BAR) activity within JRA4 of the EGEE project specified and implemented the necessary components and interfaces to enable the EGEE Grid middleware to request and use guaranteed bandwidth services. This report describes the components and interfaces required for an end-to-end BAR service and how they interact

    Visual mismatch negativity to masked stimuli presented at very brief presentation rates

    Get PDF
    Mismatch Negativity (MMN) has been characterised as a ‘pre-attentive’ component of an event-related potential (ERP) that is related to discrimination and error prediction processes. The aim of the current experiment was to establish whether visual MMN could be recorded to briefly presented, backward and forward masked visual stimuli, given both below and above levels of subjective experience. Evidence of visual MMN elicitation in the absence of the ability to consciously report stimuli would provide strong evidence for the automaticity of the visual MMN mechanism. Using an oddball paradigm, two stimuli that differed in orientation from each other, an + and an x were presented on a computer screen. Electroencephalogram (EEG) was recorded from nine participants (six females), mean age 21.4 years. Results showed that for stimuli that were effectively masked at 7ms presentation, there was little variation in the ERPs evoked to standard and deviant stimuli or in the subtraction waveform employed to delineate the visual MMN. At 14 ms stimulus presentation, when participants were able to report stimulus presence, an enhanced negativity at around 175 ms and 305 ms was observed to the deviant and was evident in the subtraction waveform. Although some of the difference observed in the ERPs can be attributed to stimulus characteristics, the use of a ‘lonely’ deviant protocol revealed attenuated visual MMN components at 14 ms stimulus presentation. Overall, results suggest that some degree of conscious attention is required before visual MMN components emerge, suggesting visual MMN is not an entirely pre-attentive process

    Oppositional COMT Val158Met effects on resting state functional connectivity in adolescents and adults

    No full text
    © 2014, The Author(s).Prefrontal dopamine levels are relatively increased in adolescence compared to adulthood. Genetic variation of COMT (COMT Val158Met) results in lower enzymatic activity and higher dopamine availability in Met carriers. Given the dramatic changes of synaptic dopamine during adolescence, it has been suggested that effects of COMT Val158Met genotypes might have oppositional effects in adolescents and adults. The present study aims to identify such oppositional COMT Val158Met effects in adolescents and adults in prefrontal brain networks at rest. Resting state functional connectivity data were collected from cross-sectional and multicenter study sites involving 106 healthy young adults (mean age 24 ± 2.6 years), gender matched to 106 randomly chosen 14-year-olds. We selected the anterior medial prefrontal cortex (amPFC) as seed due to its important role as nexus of the executive control and default mode network. We observed a significant age-dependent reversal of COMT Val158Met effects on resting state functional connectivity between amPFC and ventrolateral as well as dorsolateral prefrontal cortex, and parahippocampal gyrus. Val homozygous adults exhibited increased and adolescents decreased connectivity compared to Met homozygotes for all reported regions. Network analyses underscored the importance of the parahippocampal gyrus as mediator of observed effects. Results of this study demonstrate that adolescent and adult resting state networks are dose-dependently and diametrically affected by COMT genotypes following a hypothetical model of dopamine function that follows an inverted U-shaped curve. This study might provide cues for the understanding of disease onset or dopaminergic treatment mechanisms in major neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder

    Non-hexagonal neural dynamics in vowel space

    Get PDF
    Are the grid cells discovered in rodents relevant to human cognition? Following up on two seminal studies by others, we aimed to check whether an approximate 6-fold, grid-like symmetry shows up in the cortical activity of humans who "navigate" between vowels, given that vowel space can be approximated with a continuous trapezoidal 2D manifold, spanned by the first and second formant frequencies. We created 30 vowel trajectories in the assumedly flat central portion of the trapezoid. Each of these trajectories had a duration of 240 milliseconds, with a steady start and end point on the perimeter of a "wheel". We hypothesized that if the neural representation of this "box" is similar to that of rodent grid units, there should be an at least partial hexagonal (6-fold) symmetry in the EEG response of participants who navigate it. We have not found any dominant n-fold symmetry, however, but instead, using PCAs, we find indications that the vowel representation may reflect phonetic features, as positioned on the vowel manifold. The suggestion, therefore, is that vowels are encoded in relation to their salient sensory-perceptual variables, and are not assigned to arbitrary gridlike abstract maps. Finally, we explored the relationship between the first PCA eigenvector and putative vowel attractors for native Italian speakers, who served as the subjects in our study

    Interaction of catechol O-methyltransferase and serotonin transporter genes modulates effective connectivity in a facial emotion-processing circuitry

    Get PDF
    Imaging genetic studies showed exaggerated blood oxygenation level-dependent response in limbic structures in carriers of low activity alleles of serotonin transporter-linked promoter region (5-HTTLPR) as well as catechol O-methyltransferase (COMT) genes. This was suggested to underlie the vulnerability to mood disorders. To better understand the mechanisms of vulnerability, it is important to investigate the genetic modulation of frontal-limbic connectivity that underlies emotional regulation and control. In this study, we have examined the interaction of 5-HTTLPR and COMT genetic markers on effective connectivity within neural circuitry for emotional facial expressions. A total of 91 healthy Caucasian adults underwent functional magnetic resonance imaging experiments with a task presenting dynamic emotional facial expressions of fear, sadness, happiness and anger. The effective connectivity within the facial processing circuitry was assessed with Granger causality method. We have demonstrated that in fear processing condition, an interaction between 5-HTTLPR (S) and COMT (met) low activity alleles was associated with reduced reciprocal connectivity within the circuitry including bilateral fusiform/inferior occipital regions, right superior temporal gyrus/superior temporal sulcus, bilateral inferior/middle prefrontal cortex and right amygdala. We suggest that the epistatic effect of reduced effective connectivity may underlie an inefficient emotion regulation that places these individuals at greater risk for depressive disorders

    Serotonin transporter gene polymorphisms and brain function during emotional distraction from cognitive processing in posttraumatic stress disorder

    Get PDF
    BACKGROUND: Serotonergic system dysfunction has been implicated in posttraumatic stress disorder (PTSD). Genetic polymorphisms associated with serotonin signaling may predict differences in brain circuitry involved in emotion processing and deficits associated with PTSD. In healthy individuals, common functional polymorphisms in the serotonin transporter gene (SLC6A4) have been shown to modulate amygdala and prefrontal cortex (PFC) activity in response to salient emotional stimuli. Similar patterns of differential neural responses to emotional stimuli have been demonstrated in PTSD but genetic factors influencing these activations have yet to be examined. METHODS: We investigated whether SLC6A4 promoter polymorphisms (5-HTTLPR, rs25531) and several downstream single nucleotide polymorphisms (SNPs) modulated activity of brain regions involved in the cognitive control of emotion in post-9/11 veterans with PTSD. We used functional MRI to examine neural activity in a PTSD group (n = 22) and a trauma-exposed control group (n = 20) in response to trauma-related images presented as task-irrelevant distractors during the active maintenance period of a delayed-response working memory task. Regions of interest were derived by contrasting activation for the most distracting and least distracting conditions across participants. RESULTS: In patients with PTSD, when compared to trauma-exposed controls, rs16965628 (associated with serotonin transporter gene expression) modulated task-related ventrolateral PFC activation and 5-HTTLPR tended to modulate left amygdala activation. Subsequent to combat-related trauma, these SLC6A4 polymorphisms may bias serotonin signaling and the neural circuitry mediating cognitive control of emotion in patients with PTSD. CONCLUSIONS: The SLC6A4 SNP rs16965628 and 5-HTTLPR are associated with a bias in neural responses to traumatic reminders and cognitive control of emotions in patients with PTSD. Functional MRI may help identify intermediate phenotypes and dimensions of PTSD that clarify the functional link between genes and disease phenotype, and also highlight features of PTSD that show more proximal influence of susceptibility genes compared to current clinical categorizations

    Aesthetic and physiological effects of naturalistic multimodal music listening

    No full text
    Compared to audio only (AO) conditions, audiovisual (AV) information can enhance the aesthetic experience of a music performance. However, such beneficial multimodal effects have yet to be studied in naturalistic music performance settings. Further, peripheral physiological correlates of aesthetic experiences are not well-understood. Here, participants were invited to a concert hall for piano performances of Bach, Messiaen, and Beethoven, which were presented in two conditions: AV and AO. They rated their aesthetic experience (AE) after each piece (Experiment 1 and 2), while peripheral signals (cardiorespiratory measures, skin conductance, and facial muscle activity) were continuously measured (Experiment 2). Factor scores of AE were significantly higher in the AV condition in both experiments. LF/HF ratio, a heart rhythm that represents activation of the sympathetic nervous system, was higher in the AO condition, suggesting increased arousal, likely caused by less predictable sound onsets in the AO condition. We present partial evidence that breathing was faster and facial muscle activity was higher in the AV condition, suggesting that observing a performer's movements likely enhances motor mimicry in these more voluntary peripheral measures. Further, zygomaticus (‘smiling’) muscle activity was a significant predictor of AE. Thus, we suggest physiological measures are related to AE, but at different levels: the more involuntary measures (i.e., heart rhythms) may reflect more sensory aspects, while the more voluntary measures (i.e., muscular control of breathing and facial responses) may reflect the liking aspect of an AE. In summary, we replicate and extend previous findings that AV information enhances AE in a naturalistic music performance setting. We further show that a combination of self-report and peripheral measures benefit a meaningful assessment of AE in naturalistic music performance settings
    corecore