3,076 research outputs found

    3-D non-LTE radiative transfer effects in Fe I lines: III. Line formation in magneto-hydrodynamic atmospheres

    Full text link
    Non-local thermodynamic equilibrium (NLTE) effects in diagnostically important solar Fe I lines are important due to the strong sensitivity of Fe I to ionizing UV radiation, which may lead to a considerable under-population of the Fe I levels in the solar atmosphere and, therefore, to a sizeable weakening of Fe I lines. Such NLTE effects may be intensified or weakened by horizontal radiative transfer (RT) in a three-dimensionally (3-D) structured atmosphere. We analyze the influence of horizontal RT on commonly used Fe I lines in a snapshot of a 3-D radiation magneto-hydrodynamic (MHD) simulation of a plage region. NLTE- and horizontal RT effects occur with considerable strength (up to 50% in line depth or equivalent width) in the analyzed snapshot. As they may have either sign and both signs occur with approximately the same frequency and strength, the net effects are small when considering spatially averaged quantities. The situation in the plage atmosphere turns out to be rather complex. Horizontal transfer leads to line-weakening relative to 1-D NLTE transfer near the boundaries of kG magnetic elements. Around the centers of these elements, however, we find an often significant line-strengthening. This behavior is in contrast to that expected from previous 3-D RT computations in idealized flux-tube models, which display only a line weakening. The origin of this unexpected behavior lies in the fact that magnetic elements are surrounded by dense and relatively cool down-flowing gas, which forms the walls of the magnetic elements. The continuum in these dense walls is often formed in colder gas than in the central part of the magnetic elements. Consequently, the central parts of the magnetic element experience a sub-average UV-irradiation leading to the observed 3-D NLTE line strengthening.Comment: 13 pages, 11 figures, accepted for publication in A&

    A rule of thumb for riffle shuffling

    Full text link
    We study how many riffle shuffles are required to mix n cards if only certain features of the deck are of interest, e.g. suits disregarded or only the colors of interest. For these features, the number of shuffles drops from 3/2 log_2(n) to log_2(n). We derive closed formulae and an asymptotic `rule of thumb' formula which is remarkably accurate.Comment: 27 pages, 5 table

    The Magnetic Field in the Solar Atmosphere

    Get PDF
    This publication provides an overview of magnetic fields in the solar atmosphere with the focus lying on the corona. The solar magnetic field couples the solar interior with the visible surface of the Sun and with its atmosphere. It is also responsible for all solar activity in its numerous manifestations. Thus, dynamic phenomena such as coronal mass ejections and flares are magnetically driven. In addition, the field also plays a crucial role in heating the solar chromosphere and corona as well as in accelerating the solar wind. Our main emphasis is the magnetic field in the upper solar atmosphere so that photospheric and chromospheric magnetic structures are mainly discussed where relevant for higher solar layers. Also, the discussion of the solar atmosphere and activity is limited to those topics of direct relevance to the magnetic field. After giving a brief overview about the solar magnetic field in general and its global structure, we discuss in more detail the magnetic field in active regions, the quiet Sun and coronal holes.Comment: 109 pages, 30 Figures, to be published in A&AR

    Prospects of inflation in delicate D-brane cosmology

    Full text link
    We study D-brane inflation in a warped conifold background that includes brane-position dependent corrections for the nonperturbative superpotential. Instead of stabilizing the volume modulus chi at instantaneous minima of the potential and studying the inflation dynamics with an effective single field (radial distance between a brane and an anti-brane) phi, we investigate the multi-field inflation scenario involving these two fields. The two-field dynamics with the potential V(phi,chi) in this model is significantly different from the effective single-field description in terms of the field phi when the field chi is integrated out. The latter picture underestimates the total number of e-foldings even by one order of magnitude. We show that a correct single-field description is provided by a field psi obtained from a rotation in the two-field space along the background trajectory. This model can give a large number of e-foldings required to solve flatness and horizon problems at the expense of fine-tunings of model parameters. We also estimate the spectra of density perturbations and show that the slow-roll parameter eta_{psi psi}=M_{pl}^2 V_{,psi psi}/V in terms of the rotated field psi determines the spectral index of scalar metric perturbations. We find that it is generally difficult to satisfy, simultaneously, both constraints of the spectral index and the COBE normalization, while the tensor to scalar ratio is sufficiently small to match with observations.Comment: 12 pages, 8 figures, version to appear in Physical Review

    ALMA detection of dark chromospheric holes in the quiet Sun

    Full text link
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of a quiet-Sun region at a wavelength of 3 mm, obtained during the first solar ALMA cycle on April 27, 2017, and compare them with available chromospheric observations in the UV and visible as well as with photospheric magnetograms. ALMA images clearly reveal the presence of distinct particularly dark/cool areas in the millimeter maps having temperatures as low as 60% of the normal quiet Sun at 3 mm, which are not seen in the other data. We speculate that ALMA is sensing cool chromospheric gas, whose presence had earlier been inferred from infrared CO spectra.Comment: 9 pages, 3 figures, accepted for publication in ApJ

    The relationship between chromospheric emissions and magnetic field strength

    Full text link
    Aims. We analyze observational data from 4 instruments to study the correlations between chromospheric emission, spanning the heights from the temperature minimum region to the middle chromosphere, and photospheric magnetic field. Methods: The data consist of radio images at 3.5 mm from the Berkeley-Illinois-Maryland Array (BIMA), UV images at 1600 A from TRACE, Ca II K-line filtergrams from BBSO, and MDI/SOHO longitudinal photospheric magnetograms. For the first time interferometric millimeter data with the highest currently available resolution are included in such an analysis. We determine various parameters of the intensity maps and correlate the intensities with each other and with the magnetic field. Results: The chromospheric diagnostics studied here show a pronounced similarity in their brightness structures and map out the underlying photospheric magnetic field relatively well. We find a power law to be a good representation of the relationship between photospheric magnetic field and emission from chromospheric diagnostics at all wavelengths. The dependence of chromospheric brightness on magnetic field is found to be different for network and internetwork regions.Comment: 13 pages, 14 figures, 3 table

    Quintessential Inflation in a thawing realization

    Full text link
    We study quintessential inflation with an inverse hyperbolic type potential V(ϕ)=V0/cosh(ϕn/λn)V(\phi) = {V_0}/{\cosh \left( {\phi^n}/{\lambda^n} \right)}, where V0V_0, λ\lambda and "n" are parameters of the theory. We obtain a bound on λ\lambda for different values of the parameter n. The spectral index and the tensor-to-scalar-ratio fall in the 1σ1 \sigma bound given by the Planck 2015 data for n5n \geq 5 for certain values of λ\lambda. However for 3n<53 \leq n < 5 there exist values of λ\lambda for which the spectral index and the tensor-to-scalar-ratio fall only within the 2σ2 \sigma bound of the Planck data. Furthermore, we show that the scalar field with the given potential can also give rise to late time acceleration if we invoke the coupling to massive neutrino matter. We also consider the instant preheating mechanism with Yukawa interaction and put bounds on the coupling constants for our model using the nucleosynthesis constraint on relic gravity waves produced during inflation.Comment: 11 page
    corecore