423 research outputs found

    Free energy surface of ST2 water near the liquid-liquid phase transition

    Full text link
    We carry out umbrella sampling Monte Carlo simulations to evaluate the free energy surface of the ST2 model of water as a function two order parameters, the density and a bond-orientational order parameter. We approximate the long-range electrostatic interactions of the ST2 model using the reaction-field method. We focus on state points in the vicinity of the liquid-liquid critical point proposed for this model in earlier work. At temperatures below the predicted critical temperature we find two basins in the free energy surface, both of which have liquid-like bond orientational order, but differing in density. The pressure and temperature dependence of the shape of the free energy surface is consistent with the assignment of these two basins to the distinct low density and high density liquid phases previously predicted to occur in ST2 water.Comment: 8 pages, 9 figure

    Landscapes, dynamic heterogeneity and kinetic facilitation in a simple off-lattice model

    Full text link
    We present a simple off-lattice hard-disc model that exhibits glassy dynamics. The inherent structures are enumerated exactly, transitions between metabasins are well understood, and the particle configurations that act to facilitate dynamics are easily identified. The model readily maps to a coarse grained dynamic facilitation description.Comment: 5 pages, 5 figures, submitted to PR

    Design analysis of the bearing component of the hip joint prosthesis to improve distribution of forces and frictional wear.

    Get PDF
    This is a design analysis project aimed at reducing wear of the hip joint components by improvement of distribution of forces. Though there have been celebrated achievements in the total hip arthroplasty (THA) procedure that have brought much relief, challenges as- sociated with wear, hip joint stresses and adverse biological response have greatly affected the longevity of the implants. Prosthetic wear is a problem that has overshadowed the tremendous gains in the THA and has resulted in implants loosening so much that corrective revision surgeries were necessary. Previously THA has been known to be confined to the older patients but has recently crept downwards to include those in the twenties. This has increased demand and quality of the implants. The project analyses the forces that are active at the hip joint articular surfaces and by use of computer simulation, finite element analysis (FEA) was performed on the models where upon material and proposed design of the bearing were recommended. The finite element analysis was also compared to the Herztian contact method where it can be concluded that low stresses are achievable by maximising the contact area. This was followed by the model design optimization that gave the final specifications of the proposed design. The proposed design managed to lower contact stresses from a peak of 22 MPa which was equatorial contact to 3MPa over a considerable wide area due alterations in the geometry, diameters sizes and clearances. However the model still needs to be tested in vitro to ascertain the wear characteristics

    "Swarm relaxation": Equilibrating a large ensemble of computer simulations

    Full text link
    It is common practice in molecular dynamics and Monte Carlo computer simulations to run multiple, separately-initialized simulations in order to improve the sampling of independent microstates. Here we examine the utility of an extreme case of this strategy, in which we run a large ensemble of MM independent simulations (a "swarm"), each of which is relaxed to equilibrium. We show that if MM is of order 10310^3, we can monitor the swarm's relaxation to equilibrium, and confirm its attainment, within ∌10τˉ\sim 10\bar\tau, where τˉ\bar\tau is the equilibrium relaxation time. As soon as a swarm of this size attains equilibrium, the ensemble of MM final microstates from each run is sufficient for the evaluation of most equilibrium properties without further sampling. This approach dramatically reduces the wall-clock time required, compared to a single long simulation, by a factor of several hundred, at the cost of an increase in the total computational effort by a small factor. It is also well-suited to modern computing systems having thousands of processors, and is a viable strategy for simulation studies that need to produce high-precision results in a minimum of wall-clock time. We present results obtained by applying this approach to several test cases.Comment: 12 pages. To appear in Eur. Phy. J. E, 201

    Crystal Nucleation in a Supercooled Liquid with Glassy Dynamics

    Full text link
    In simulations of supercooled, high-density liquid silica we study a range of temperature T in which we find both crystal nucleation, as well as the characteristic dynamics of a glass forming liquid, including a breakdown of the Stokes-Einstein relation. We find that the liquid cannot be observed below a homogeneous nucleation limit (HNL) at which the liquid crystallizes faster than it can equilibrate. We show that the HNL would occur at lower T, and perhaps not at all, if the Stokes-Einstein relation were obeyed, and hence that glassy dynamics plays a central role in setting a crystallization limit on the liquid state in this case. We also explore the relation of the HNL to the Kauzmann temperature, and test for spinodal-like effects near the HNL.Comment: 4 pages, 4 figure

    The liquid-glass transition of silica

    Full text link
    We studied the liquid-glass transition of SiO2SiO_2 by means of replica theory, utilizing an effective pair potential which was proved to reproduce a few experimental features of silica. We found a finite critical temperature T0T_0, where the system undergoes a phase transition related to replica symmetry breaking, in a region where experiments do not show any transition. The possible sources of this discrepancy are discussed.Comment: 14 pages, 6 postscript figures. Revised version accepted for pubblication on J.Chem.Phy

    Stochastic Model and Equivalent Ferromagnetic Spin Chain with Alternation

    Full text link
    We investigate a non-equilibrium reaction-diffusion model and equivalent ferromagnetic spin 1/2 XY spin chain with alternating coupling constant. The exact energy spectrum and the n-point hole correlations are considered with the help of the Jordan-Wigner fermionization and the inter-particle distribution function method. Although the Hamiltonian has no explicit translational symmetry, the translational invariance is recovered after long time due to the diffusion. We see the scaling relations for the concentration and the two-point function in finite size analysis.Comment: 7 pages, LaTeX file, to appear in J. Phys. A: Math. and Ge

    Test of classical nucleation theory on deeply supercooled high-pressure simulated silica

    Full text link
    We test classical nucleation theory (CNT) in the case of simulations of deeply supercooled, high density liquid silica, as modelled by the BKS potential. We find that at density ρ=4.38\rho=4.38~g/cm3^3, spontaneous nucleation of crystalline stishovite occurs in conventional molecular dynamics simulations at temperature T=3000 K, and we evaluate the nucleation rate J directly at this T via "brute force" sampling of nucleation events. We then use parallel, constrained Monte Carlo simulations to evaluate ΔG(n)\Delta G(n), the free energy to form a crystalline embryo containing n silicon atoms, at T=3000, 3100, 3200 and 3300 K. We find that the prediction of CNT for the n-dependence of ΔG(n)\Delta G(n) fits reasonably well to the data at all T studied, and at 3300 K yields a chemical potential difference between liquid and stishovite that matches independent calculation. We find that n∗n^*, the size of the critical nucleus, is approximately 10 silicon atoms at T=3300 K. At 3000 K, n∗n^* decreases to approximately 3, and at such small sizes methodological challenges arise in the evaluation of ΔG(n)\Delta G(n) when using standard techniques; indeed even the thermodynamic stability of the supercooled liquid comes into question under these conditions. We therefore present a modified approach that permits an estimation of ΔG(n)\Delta G(n) at 3000 K. Finally, we directly evaluate at T=3000 K the kinetic prefactors in the CNT expression for J, and find physically reasonable values; e.g. the diffusion length that Si atoms must travel in order to move from the liquid to the crystal embryo is approximately 0.2 nm. We are thereby able to compare the results for J at 3000 K obtained both directly and based on CNT, and find that they agree within an order of magnitude.Comment: corrected calculation, new figure, accepted in JC
    • 

    corecore