6,545 research outputs found

    Spin Freezing in the Spin Liquid Compound FeAl2O4

    Full text link
    Spin freezing in the AA-site spinel FeAl2_2O4_4 which is a spin liquid candidate is studied using remnant magnetization and nonlinear magnetic susceptibility and isofield cooling and heating protocols. The remnant magnetization behavior of FeAl2_2O4_4 differs significantly from that of a canonical spin glass which is also supported by analysis of the nonlinear magnetic susceptibility term χ3(T)\chi_3 (T). Through the power-law analysis of χ3(T)\chi_3 (T), a spin-freezing temperature, TgT_g = 11.4±\pm0.9~K and critical exponent, γ\gamma = 1.48±\pm0.59 are obtained. Cole-Cole analysis of magnetic susceptibility shows the presence of broad spin relaxation times in FeAl2_2O4_4, however, the irreversible dc susceptibility plot discourages an interpretation based on conventional spin glass features. The magnetization measured using the cooling-and-heating-in-unequal-fields protocol brings more insight to the magnetic nature of this frustrated magnet and reveals unconventional glassy behaviour. Combining our results, we arrive at the conclusion that the present sample of FeAl2_2O4_4 consists of a majority spin liquid phase with "glassy" regions embedded.Comment: 5 pages, 6 figs, 2-column, Accepted to Phys. Rev.

    MINIMAX FILTERING IN WIRELESS SENSOR AND ACTOR NETWORKS

    Get PDF
    In this paper to handle the mobility of actors a hybrid strategy that includes location updating and location prediction is used.The usage of Kalman Filtering in location prediction high power and energy consumptions. To avoid the drawbacks of Kalman Filtering in location prediction, we make use of Minimax filtering (also Known as H∞ filtering). Minimax Filter has been used in WSANs by minimizing the estimation error and maximizing the worst case adversary noise. Minimax filtering will also minimize power and energy consumptions

    Double-phase transition and giant positive magnetoresistance in the quasi-skutterudite Gd3_3Ir4_4Sn13_{13}

    Full text link
    The magnetic, thermodynamic and electrical/thermal transport properties of the caged-structure quasi-skutterudite Gd3_3Ir4_4Sn13_{13} are re-investigated. The magnetization M(T)M(T), specific heat Cp(T)C_p(T) and the resistivity ρ(T)\rho(T) reveal a double-phase transition -- at TN1T_{N1}\sim 10~K and at TN2T_{N2}\sim 8.8~K -- which was not observed in the previous report on this compound. The antiferromagnetic transition is also visible in the thermal transport data, thereby suggesting a close connection between the electronic and lattice degrees of freedom in this Sn-based quasi-skutterudite. The temperature dependence of ρ(T)\rho(T) is analyzed in terms of a power-law for resistivity pertinent to Fermi liquid picture. Giant, positive magnetoresistance (MR) \approx 80%\% is observed in Gd3_3Ir4_4Sn13_{13} at 2~K with the application of 9~T. The giant MR and the double magnetic transition can be attributed to the quasi-cages and layered antiferromagnetic structure of Gd3_3Ir4_4Sn13_{13} vulnerable to structural distortions and/or dipolar or spin-reorientation effects. The giant value of MR observed in this class of 3:4:13 type alloys, especially in a Gd-compound, is the highlight of this work.Comment: 20 pages single column, 7 figures, 1 table; Accepted to J. Appl. Phys., 201

    Theoretical analysis of perching and hovering maneuvers

    Get PDF
    Unsteady aerodynamic phenomena are encountered in a large number of modern aerospace and non-aerospace applications. Leading edge vortices (LEVs) are of particular interest because of their large impact on the forces and performance. In rotorcraft applications, they cause large vibrations and torsional loads (dynamic stall), affecting the performance adversely. In insect flight however, they contribute positively by enabling high-lift flight. Identifying the conditions that result in LEV formation and modeling their effects on the flow is an important ongoing challenge. Perching (airfoil decelerates to rest) and hovering (zero freestream velocity) maneuvers are of special interest. In earlier work by the authors, a Leading Edge Suction Parameter (LESP) was developed to predict LEV formation for airfoils undergoing arbitrary variation in pitch and plunge at a constant freestream velocity. In this research, the LESP criterion is extended to situations where the freestream velocity is varying or zero. A point-vortex model based on this criterion is developed and results from the model are compared against those from a computational fluid dynamics (CFD) method. Abstractions of perching and hovering maneuvers are used to validate the low-order model's performance in highly unsteady vortex-dominated flows, where the time-varying freestream/translational velocity is small in magnitude compared to the other contributions to the velocity experienced by the leading edge region of the airfoil. Time instants of LEV formation, flow topologies and force coefficient histories for the various motion kinematics from the low-order model and CFD are obtained and compared. The LESP criterion is seen to be successful in predicting the start of LEV formation and the point-vortex method is effective in modeling the flow development and forces on the airfoil. Typical run-times for the low-order method are between 30-40 seconds, making it a potentially convenient tool for control/design applications

    On Almost Pi - Generalized Semi Continuous Mappings in Intuitionistic Fuzzy Topological Spaces

    Get PDF
    In this paper we have introduced intuitionistic fuzzy almost pi - generalized semi continuous mappings and intuitionistic fuzzy almost contra pi - generalized semi continuous mappings and some of their basic properties are studied. Key words: Intuitionistic fuzzy topology, intuitionistic fuzzy pi -generalized semi closed set, intuitionistic fuzzy almost pi - generalized semi continuous mappings and intuitionistic fuzzy almost contra - generalized semi continuous mappings, intuitionistic fuzzy T1/2 (IFT1/2) space and intuitionistic fuzzy gT1/2 (IF gT1/2 ) spac

    Generation of a train of ultrashort pulses using periodic waves in tapered photonic crystal fibres

    Get PDF
    Funding This work was supported by the Ministry of Education , Nigeria for financial support through the TETFUND scholarship 55 scheme; CSIR [grant number 03(1264)/12/EMR-II].Peer reviewedPostprin

    Structural, Magnetic and Magneto-caloric studies of Ni50Mn30Sn20Shape Memory Alloy

    Full text link
    We have synthesized a nominal composition of Ni50Mn30Sn20 alloy using arc melting technique. Rietveld refinement confirms the austenite L21 structure in Fm-3m space group. Electrical resistivity has been found to clearly exhibiting two different phenomena viz. a magnetic transition from paramagnetic to ferromagnetic and a structural transition from austenite to martensitic phase. Thermo-magnetization measurements M(T) confirms ferromagnetic transition temperature TC at 222 K and martensitic transition starting at 127 K(MS). Magnetization measurement M(H) at 10 K confirms the ferromagnetic state. Frequency dependence of ac susceptibility \c{hi}' at low temperature suggests spin glass behavior in the system. The isothermal magnetic entropy change values have been found to be 1.14 J/Kg.K, 2.69 J/Kg.K and 3.9 J/Kg.K, with refrigeration capacities of 19.6 J/kg, 37.8 J/kg and 54.6 J/kg for the field change of 1, 2 and 3 Tesla respectively at 227 K.Comment: 16 pages text + Figs. Ni50Mn30Sn20 alloy: reasonable refrigeration capacity tunable to Room

    USCID fourth international conference

    Get PDF
    Presented at the Role of irrigation and drainage in a sustainable future: USCID fourth international conference on irrigation and drainage on October 3-6, 2007 in Sacramento, California.Includes bibliographical references.The performance of an executed subsurface drainage system was evaluated under unsteady flow conditions. The impulse-response relation has been studied for two different conditions of drain spacings, namely, the executed drain spacing based on steady state flow conditions and the drain spacing proposed on unsteady state flow conditions, incorporating the effects of drainable porosity. It is found rational to use the "Dezeeuw-Hellinga model" for prediction of impulse response relations in terms of temporal water table fluctuations against rainfall — recharge under unsteady state flow conditions. The responses of a sub-surface drainage system for the impulse of incessant rainfall have been studied. The values of calculated drain spacings varied from 11 to 15 m. However, due to economic conditions, the practical drain spacings of the layout have been fixed at wider value of 35m and 55m. It is found that the drain spacings adopted for unsteady state flow conditions might have resulted in a better performance of the drains compared to steady state drain spacing as depicted by Dezeeuw-Hellinga model run. The drainable porosity being the vital parameter in an unsteady state equation, the Dezeeuw-Hellinga model was also used for varying levels of drainable porosity under given drain spacing conditions. Generally, the reference drainable porosity value is taken as 10 per cent for most of the drainage studies and the influence on drain outflows were compared for an increased value of 20 per cent and decreased value of 5 per cent, since the drainable porosity value in the study area varied from 5 to 20 per cent. It was found that the change in drainable porosity significantly influence the drain performance as depicted by Dezeeuw-Hellinga model run over all the standard week of year. The executed sub-surface drainage system has been found satisfactory in bringing down the soil salinity levels to desirable limits below 4 dSm-1. The executed sub-surface drainage system has also resulted in appreciable crop productivity improvements in the locality
    corecore