59 research outputs found

    Aplicación del enfoque multi-índice con imágenes Sentinel-2 para obtener áreas urbanas en la estación seca (Zonas semiáridas en el noreste de Argelia)

    Full text link
    [EN] The mapping of urban areas mostly presents a big difficulty, particularly, in arid and semi-arid environments. For that reason, in this research, we expect to increase built up accuracy mapping for Bordj Bou Arreridj city in semi-arid regions (North-East Algeria) by focusing on the identification of appropriate combination of the remotely sensed spectral indices. The study applies the ‘k–means’ classifier. In this regard, four spectral indexes were selected, namely normalized difference tillage index (NDTI) for built-up, and both bare soil index (BSI) and dry bare-soil index (DBSI), which are related to bare soil, as well as the normalized difference vegetation index (NDVI). All previous spectral indices mentioned were derived from Sentinel-2 data acquired during the dry season. Two combinations of them were generated using layer stack process, keeping both of NDTI and NDVI index constant in both combinations so that the multi-index NDTI/BSI/NDVI was the first single dataset combination, and the multi-index NDTI/DBSI/NDVI as the second component. The results show that BSI index works better with NDTI index compared to the use of DBSI index. Therefore, BSI index provides improvements: bare soil classes and built-up were better discriminated, where the overall accuracy increased by 5.67% and the kappa coefficient increased by 12.05%. The use of k-means as unsupervised classifier provides an automatic and a rapid urban area detection. Therefore, the multi-index dataset NDTI/ BSI / NDVI was suitable for mapping the cities in dry climate, and could provide a better urban management and future remote sensing applications in semi-arid areas particularly.[ES] La cartografía de las zonas urbanas presenta una gran dificultad, especialmente en los entornos áridos y semiáridos. Por esa razón, en esta investigación esperamos aumentar la precisión de la cartografía de la ciudad de Bordj Bou Arreridj en las regiones semiáridas (noreste de Argelia) centrándose en la identificación de la combinación adecuada de los índices espectrales obtenidos por teledetección. El estudio aplica el clasificador ‘k-means’. A este respecto, se seleccionaron cuatro índices espectrales, a saber, el índice de labranza de diferencia normalizada (NDTI) para el área construida, el índice de suelo desnudo (BSI) y el índice de suelo desnudo seco (DBSI), que están relacionados con el suelo desnudo, así como el índice de vegetación de diferencia normalizada (NDVI). Todos los índices espectrales anteriores mencionados se derivaron de datos Sentinel-2 adquiridos durante la estación seca (agosto). Se generaron dos combinaciones de ellas utilizando el proceso de superposición de capas, manteniendo constante tanto el índice NDTI como el índice NDVI en ambas combinaciones, de modo que el multi-índice NDTI/BSI/NDVI fue la primera combinación de conjuntos de datos, y el multi-índice NDTI/DBSI/NDVI fue el segundo componente. Los resultados muestran que el índice BSI funciona mejor con NDTI en comparación con el uso de DBSI. Por lo tanto, BSI proporciona mejoras: las clases de suelo desnudo y la de construcciones fueron mejor discriminadas, aumentando la precisión global en un 5,67%, y el coeficiente kappa un 12,05%. El uso de k-means como clasificador no supervisado proporciona una detección del área urbana automática y rápida. Por lo tanto, el conjunto de datos de varios índices NDTI/ BSI/ NDVI fue adecuado para cartografiar las ciudades en clima seco, y podría proporcionar una mejor gestión urbana y futuras aplicaciones de teledetección en zonas semiáridas en particular.Rouibah, K.; Belabbas, M. (2020). Applying Multi-Index approach from Sentinel-2 Imagery to Extract Urban Area in dry season (Semi-Arid Land in North East Algeria). Revista de Teledetección. 0(56):89-101. https://doi.org/10.4995/raet.2020.13787OJS89101056Al-Quraishi, A. ( 2011). Drought mapping using Geoinformation technology for some sites in the Iraqi Kurdistan region. International Journal of Digital Earth, 4, 239-257. https://doi.org/10.1080/17538947.2010.489971Becerril-Piña, R., Mastachi-Loza, C. A., González-Sosa, E., Díaz-Delgado, C., Bâ, K. M. ( 2015). Assessing desertification risk in the semi-arid highlands of central Mexico. Journal of Arid Environments, 120, 4-13. https://doi.org/10.1016/j.jaridenv.2015.04.006Bouzekri, S., Aziz Lasbet, A., Lachehab, A. ( 2015). A New Spectral Index for Extraction of Built-Up Area Using Landsat-8 Data. Journal of the Indian Society of Remote Sensing, 43. https://doi.org/10.1007/s12524-015-0460-6Bramhe, V., Ghosh, S., Garg, P. ( 2018). EXTRACTION OF BUILT-UP AREA BY COMBINING TEXTURAL FEATURES AND SPECTRAL INDICES FROM LANDSAT-8 MULTISPECTRAL IMAGE. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5, 727-733. https://doi.org/10.5194/isprs-archives-XLII-5-727-2018Chen, W., Liu, L., Zhang, C., Wang, J., Wang, J., Pan, Y. ( 2004). Monitoring the seasonal bare soil areas in Beijing using multitemporal TM images. Paper presented at the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium. (Vol. 5, pp. 3379-3382). https://doi.org/10.1109/IGARSS.2004.1370429Congalton, R. ( 1991). A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data (Vol. 37). https://doi.org/10.1016/0034-4257(91)90048-BCongedo, L. (2016). Semi-Automatic Classification Plugin Documentation. Release 6.0.1.1.Côte, M. ( 1996). L'algerie espace er societe paris: masson.Daughtry, C. S. T., Serbin, G., Reeves, J. B., Doraiswamy, P. C., Hunt, E. R. ( 2010). Spectral Reflectance of Wheat Residue during Decomposition and Remotely Sensed Estimates of Residue Cover. Remote Sensing, 2(2), 416-431. https://doi.org/10.3390/rs2020416Deng, C., Wu, C. ( 2012). BCI: A biophysical composition index for remote sensing of urban environments. Remote Sensing of Environment, 127, 247-259. https://doi.org/10.1016/j.rse.2012.09.009Deventer, A., Ward, A. D., Gowda, P. H., Lyon, J. G. (1997). Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogrammetric engineering and remote sensing., 63(1), 87-93.Diek, S., Fornallaz, F., Schaepman, M., Jong, R. ( 2017). Barest Pixel Composite for Agricultural Areas Using Landsat Time Series. Remote Sensing, 9, 1245. https://doi.org/10.3390/rs9121245Doumit, J., Sakr, S. ( 2015). La Cartographie du Sol nu dans la Vallee de la Bekaa à partir de la Tetedetection. InterCarto. InterGIS, 1, 19-24. https://doi.org/10.24057/2414-9179-2015-1-21-19-24Drusch M, U., D. B., S., C., Colin, O., Fernandez, V., Gascon, F., . . . Bargellini, P. ( 2012). Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25-36. https://doi.org/10.1016/j.rse.2011.11.026Eskandari, I., Navid, H., Rangzan, K. ( 2016). Evaluating spectral indices for determining conservation and conventional tillage systems in a vetch-wheat rotation. International Soil and Water Conservation Research, 4(2), 93-98. https://doi.org/10.1016/j.iswcr.2016.04.002Ettehadi Osgouei, P., Kaya, S., Sertel, E., Alganci, U. ( 2019). Separating Built-Up Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030345Foody, G. M. ( 2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185-201. https://doi.org/10.1016/S0034-4257(01)00295-4Gašparović, M., Zrinjski, M., Gudelj, M. ( 2019). Automatic cost-effective method for land cover classification (ALCC). Computers, Environment and Urban Systems, 76, 1-10. https://doi.org/10.1016/j.compenvurbsys.2019.03.001Gllavata, J., Ewerth, R., Freisleben, B. (2004). Text detection in images based on unsupervised classification of high-frequency wavelet coefficients. Paper presented at the Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. https://doi.org/10.1109/ICPR.2004.1334146Gupta, G., Singh, J., Pandey, P., Tomar, V., Rani, M., Kumar, P. ( 2014). Geospatial Strategy for Estimation of Soil Organic Carbon in Tropical Wildlife Reserve. pp. 69-83. https://doi.org/10.1007/978-3-319-05906-8_5.Jamalabad, M. ( 2004). Forest canopy density monitoring using satellite images. Paper presented at the Geo-Imagery Bridging Continents XXth ISPRS Congress, Istanbul, Turkey, 2004.Jieli, C. M., L.; Yongxue, L.; Chenglei, S.; Wei, H. ( 2010). Extract residential areas automatically by New Built-up Index. . Paper presented at the In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China. https://doi.org/10.1109/GEOINFORMATICS.2010.5567823Lee, J., Acharya, T., Lee, D. ( 2018). Exploring Land Cover Classification Accuracy of Landsat 8 Image using Spectral Indices Layer Stacking in Hilly Region of South Korea. Sensors and Materials, 30(12), 2927-2941. https://doi.org/2910.18494/SAM.12018.11934.Leroux, L., Congedo, L., Bellón, B., Gaetano, R., Bégué, A. ( 2018). Land Cover Mapping Using Sentinel-2 Images and the Semi-Automatic Classification Plugin: A Northern Burkina Faso Case Study (pp. 131-165). https://doi.org/10.1002/9781119457107.ch4Li, H., Wang, C., Zhong, C., Su, A., Xiong, C., Wang, J., Liu, J. ( 2017). Mapping Urban Bare Land Automatically from Landsat Imagery with a Simple Index. Remote Sensing, 9(3). https://doi.org/10.3390/rs9030249Liu, Y., Chen, J., Cheng, W., Sun, C., Zhao, S., Yingxia, P. ( 2014). Spatiotemporal dynamics of the urban sprawl in a typical urban agglomeration: a case study on Southern Jiangsu, China (1983-2007).Frontiers of Earth Science, 8, 490-504. https://doi.org/10.1007/s11707-014-0423-1Loi, D., Chou, T.-Y., Fang, Y.-M. ( 2017). Integration of GIS and Remote Sensing for Evaluating Forest Canopy Density Index in Thai Nguyen Province, Vietnam. International Journal of Environmental Science and Development, 8, 539-542. https://doi.org/10.18178/ijesd.2017.8.8.1012Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Müller-Wilm, U., . . . Gascon, F. ( 2016). SENTINEL-2 SEN2COR: L2A Processor for Users.Lynch, P., Blesius, L. ( 2019). Urban Remote Sensing: Feature Extraction.MacQueen, J. ( 1967). Some Methods for Classification and Analysis of Multivariate Observations. Paper presented at the In L. M. Le Cam & J. Neyman (eds.) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability University of California Press, Berkeley, CA, USA.Muna, E., Walker, S. ( 2010). Environmental Degradation of Natural Resources in Butana Area of Sudan. https://doi.org/10.1007/978-90-481-8657-0_13.Nur Hidayati, I., Suharyadi, R., Danoedoro, P. ( 2018). Developing an Extraction Method of Urban Built-Up Area Based on Remote Sensing Imagery Transformation Index. Forum Geografi, 32. https://doi.org/10.23917/forgeo.v32i1.5907Pal, M., Antil, K. ( 2017). Comparison of Landsat 8 and Sentinel 2 data for Accurate Mapping of Built-Up Area and Bare Soil. Paper presented at the The 38th Asian Conference on Remote Sensing, New Delhi, India.Patel, N., Mukherjee, R. ( 2014). Extraction of impervious features from spectral indices using artificial neural network. Arabian Journal of Geosciences, 8. https://doi.org/10.1007/s12517-014-1492-xRasul, A., Balzter, H., Ibrahim, G. R. F., Hameed, H. M., Wheeler, J., Adamu, B., . . . Najmaddin, P. M. ( 2018). Applying Built-Up and Bare-Soil Indices from Landsat 8 to Cities in Dry Climates. Land, 7(3), 81. https://doi.org/10.3390/land7030081Rikimaru, A., Miyatake, S. ( 1997). Development of Forest Canopy Density Mapping and Monitoring Model using Indices of Vegetation, Bare soil and Shadow. . Paper presented at the Proceeding of the 18th Asian Conference on Remote Sensing (ACRS) 1997, Kuala Lumpur, Malaysia.Rikimaru, A., Roy, P., Miyatake, S. ( 2002). Tropical forest cover density mapping. Tropical ecology, 43(1), 39-47.Rouse, J., Haas, R., Schell, J., Deering, D., Freden, S. ( 1973). Monitoring vegetation systems in the Great Plains with ERTS.(pp. 309-317). Paper presented at the Proceedings of 3rd Earth Resources Technology Satellite-1 Symposium. pp. 309-317Sun, G., Chen, X., Jia, X., Yao, Y., Wang, Z. ( 2016). Combinational Build-Up Index (CBI) for Effective Impervious Surface Mapping in Urban Areas. IEEE Journal of selected topics in applied earth observations and remote sensing, 9(5), 2081-2092. https://doi.org/10.1109/JSTARS.2015.2478914Tola, E., Al-Gaadi, K. A., Madugundu, R. ( 2019). Employment of GIS techniques to assess the long-term impact of tillage on the soil organic carbon of agricultural fields under hyper-arid conditions. PLOS ONE, 14, e0212521. https://doi.org/10.1371/journal.pone.0212521Tucker, C. J. ( 1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0Useya, J., Chen, S., Murefu, M. ( 2019). Cropland Mapping and Change Detection: Toward Zimbabwean Cropland Inventory. IEEE Access, 7, 53603-53620. https://doi.org/10.1109/ACCESS.2019.2912807Valdiviezo-N, J., Téllez-Quiñones, A., Salazar-Garibay, A., López-Caloca, A. ( 2018). Built-up index methods and their applications for urban extraction from Sentinel 2A satellite data: discussion. Journal of the Optical Society of America A, 35, 35. https://doi.org/10.1364/JOSAA.35.000035Vanhellemont, Q., Ruddick, K. (2016). Acolite for Sentinel-2: Aquatic applications of MSI imagery. Paper presented at the Proceedings of the 2016 ESA Living Planet Symposium, 09 - 13 May 2016,Prague, Czech Republic. pp. 9-13.Vapnik, V. N. ( 1995). The nature of statistical learning theory: Springer-Verlag. https://doi.org/10.1007/978-1-4757-2440-0Vigneshwaran, S., Vasantha Kumar, S. ( 2018). EXTRACTION OF BUILT-UP AREA USING HIGH RESOLUTION SENTINEL-2A AND GOOGLE SATELLITE IMAGERY. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W9, 165-169. https://doi.org/10.5194/isprs-archives-XLII-4-W9-165-2018Waqar, M., Mirza, J., Mumtaz, R., Hussain, E. ( 2012). Development of New Indices for Extraction of Built-Up Area & Bare Soil from Landsat Data. Open Access Scientific Reports, 1(1), 01-04.Xi, Y., Xuan Thinh, N., Li, C. ( 2019). Preliminary comparative assessment of various spectral indices for built-up land derived from Landsat-8 OLI and Sentinel-2A MSI imageries. European Journal of Remote Sensing, 52, 240-252. https://doi.org/10.1080/22797254.2019.1584737Xian, G., Homer, C., Fry, J. ( 2009). Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sensing of Environment, 113(6), 1133-1147. https://doi.org/10.1016/j.rse.2009.02.004Xu, H. ( 2007). Extraction of Urban Built-up Land Features from Landsat Imagery Using a Thematicoriented Index Combination Technique. Photogrammetric Engineering & Remote Sensing, 73(12), 1381-1391. https://doi.org/10.14358/PERS.73.12.1381Xu, H. ( 2008). A new index for delineating built-up land features in satellite imagery. International Journal of Remote Sensing, 29, 4269-4276. https://doi.org/10.1080/01431160802039957Yilmaz, E., Varol, B., topaloğlu, R., Sertel, E. ( 2019). Object-Based Classification of Izmir Metropolitan City by Using Sentinel-2 Images. 2019 9th International Conference on Recent Advances in Space Technologies (RAST), 407-412. https://doi.org/10.1109/RAST.2019.8767781Zha, Y., Gao, J., Ni, S. ( 2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583-594. https://doi.org/10.1080/01431160304987Zuur, A. F., Ieno, E. N., Smith, G. M. ( 2007). Principal component analysis and redundancy analysis. Analysing ecological data, 193-224. https://doi.org/10.1007/978-0-387-45972-

    Un système d'aide au traitement des informations de veille stratégique : concepts, méthode et résultats

    No full text
    RÉSUMÉ Cette recherche s¿inscrit dans le cadre du traitement des informations fragmentaires et incertaines (IFI) de veille stratégique. Le traitement des IFI est un problème peu structuré, pour lequel il existe peu de recherches utiles aux dirigeants d¿entreprises. Devenu un axe de recherche assez récent, les recherches sur ce problème sont assez rares. La conception d'un système de traitement est alors utile pour aider à comprendre le processus du traitement des IFI, capitaliser de nouvelles connaissances par retour d'expériences et suggérer de nouvelles perspectives. L'article décrit la conception de la méthodologie, le prototype développé et les enseignements tirés à partir des premières formes de validation. ABSTRACT Interpretating weak signs of business intelligence is an ill-structured problem encountered by many companies' managers. Those managers do not know how to interpret weak signs in order to extract meaning from anticipatory and fragmentary information elements. Surveys and action researches performed by our team confirm this problem and therefore, it becomes our main research focus. Because there is little underlying theory available on the subject, the design of a system helps to collect the reactions of end-users and to pick up relevant observations with a view to increase the understanding both weak sign interpretation and the business intelligence process. The method, the system and the issues that emerge from their validation are described

    Combining workflow and PDM based on the workflow management coalition and STEP standards: the case of axalant

    No full text
    Product data management (PDM) current technology has several pitfalls such as lack of compliance of workflow modules to standards as well as lack of interoperability between these systems. This paper illustrates the extension of the current workflow management system part of the PDM system axalant to support engineering processes management. The extension was based on an analysis of the workflow management coalition and STEP standards and, through the extension described in the paper, now axalant complies with these standards. Because of this it is now possible to exchange workflow data with existing workflow systems on the market. In this paper the two standards are analysed, the required workflow architecture is specified, and the resulting implementation is described. The necessary enhancements include the extension of the data model of axalant, the modification of the corresponding software, the modification of the user interface and the link to the interface between axalant and ProView, which helps to generate graphical process definitions. Major achievements consist of the enhancement of process design through the creation of building blocks (split- and join-operations) as well as the enhancement of organizational structure through the usage of roles as a resource for process activities. Moreover, the paper adds flexibility for axalant to handle changes, and axalant is able to generate workflow templates and ad-hoc processes and to communicate with external workflow systems

    State of the art of available tools related to simnet project

    No full text

    Specification of an engineering workflow methodology

    No full text

    PLEASE SCROLL DOWN FOR ARTICLE

    No full text
    Publication details, including instructions for authors and subscription information

    1st Six monthly progress report of SIMNET project

    No full text
    corecore