11 research outputs found

    Anxiety disorders in headache patients in a specialised clinic: prevalence and symptoms in comparison to patients in a general neurological clinic

    Get PDF
    Data from several studies indicate an association of headache with anxiety disorders. In this study, we assessed and differentiated anxiety disorders in 100 headache patients by using the PSWQ (Penn State Worry Questionnaire) screening tool for generalised anxiety disorder (GAD) and the ACQ (Agoraphobic Cognitions Questionnaire) and BSQ (Body Sensation Questionnaire) for panic disorder (PD). Control groups were constructed: (1) on the basis of epidemiological studies on PD and GAD in the general population and (2) by including neurological patients. 37.0% of headache patients had a GAD. 27% of headache patients met the score for PD in the BSQ, 4.0% in the ACQ. Significant results were obtained in comparison to the general population (p < 0.001) and with regard to GAD in comparison with a sample of neurological patients (p < 0.005). The BSQ significantly correlated with the number of medication days (p < 0.005). The results confirm the increased prevalence of GAD in headache patients. PD seems to increase the risk of medication overuse

    Enhanced Fear Expression in a Psychopathological Mouse Model of Trait Anxiety: Pharmacological Interventions

    Get PDF
    The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB), or normal (NAB) anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the Îą2,3,5-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i) for identifying biological factors underlying misguided conditioned fear responses and (ii) for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias

    A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    Get PDF
    BACKGROUND: This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. DISCUSSION: The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. SUMMARY: Homeopathic remedies are proposed as source nanoparticles that mobilize hormesis and time-dependent sensitization via non-pharmacological effects on specific biological adaptive and amplification mechanisms. The nanoparticle nature of remedies would distinguish them from conventional bulk drugs in structure, morphology, and functional properties. Outcomes would depend upon the ability of the organism to respond to the remedy as a novel stressor or heterotypic biological threat, initiating reversals of cumulative, cross-adapted biological maladaptations underlying disease in the allostatic stress response network. Systemic resilience would improve. This model provides a foundation for theory-driven research on the role of nanomaterials in living systems, mechanisms of homeopathic remedy actions and translational uses in nanomedicine

    Effect of Neurexan on the pattern of EEG frequencies in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various medications of natural origin have effectively treated stress-related disorders, such as sleep disturbances and agitated conditions. The efficacy of Neurexan, a multicomponent, low-dose medication, has been demonstrated in observational studies, but its exact mechanism of action has not been determined.</p> <p>Methods</p> <p>To characterize the effects of Neurexan on the central nervous system, we analyzed the spectral frequencies of field potentials in four rat brain areas after a single oral administration of Neurexan. Different doses of Neurexan were tested within a crossover design, and effects were compared with vehicle control.</p> <p>Results</p> <p>Significant effects were observed with 0.5 tablets of Neurexan, predominantly on δ- and θ-waves in the frontal cortex and reticular formation (<it>P</it> < 0.01). In the reticular formation, significant changes of δ- and θ-waves occurred as early as during the first hour after administration. The time course revealed a significant and longer-lasting increase of δ- and θ-waves in the frontal cortex and reticular formation, whereas other spectral frequencies were only transiently affected in the frontal cortex, reticular formation, and striatum.</p> <p>Conclusion</p> <p>In conclusion, this study demonstrated that the low-dose medication Neurexan influences central nervous system activity in rats. The resulting electroencephalographic profile of Neurexan shows several similarities with those of other calming agents, such as Valeriana and Passiflora, suggesting a potential benefit of Neurexan for patients with stress-related disorders. Moreover, this report demonstrates that electroencephalographic signatures are also valid biomarkers for the assessment of low-dose medications, such as Neurexan.</p
    corecore