293 research outputs found

    Powder metallurgy Rene 95 rotating turbine engine parts, volume 2

    Get PDF
    A Rene 95 alloy as-HIP high pressure turbine aft shaft in the CF6-50 engine and a HIP plus forged Rene 95 compressor disk in the CFM56 engine were tested. The CF6-50 engine test was conducted for 1000 C cycles and the CFM56 test for 2000 C cycles. Post test evaluation and analysis of the CF6-50 shaft and the CFM56 compressor disk included visual, fluorescent penetrant, and dimensional inspections. No defects or otherwise discrepant conditions were found. These parts were judged to have performed satisfactorily

    KINEMATIC AND KINETIC PATTERNS IN OLYMPIC WEIGHTLIFTING

    Get PDF
    The purpose of this study was to identify lower extremity kinematic and kinetic patterns during weightlifting movements and to compare them across different external loads. Subjects completed multiple sets of the clean exercise at various percentage loads. Principal component analysis (PCA) was used to extract kinematic and kinetics patterns of the hip, knee, and ankle joint across the loads. These patterns were then compared across joint and percentage load. Results indicate that lower extremity kinematics and kinetics can be characterized through combinations of PCA-derived patterns. Patterns differed predominantly between joints, but not across percentage loads. The results point to joint-specific lower extremity function during Olympic weightlifting and quantified important technical aspects

    Cashmere Marketing is a New Income Source for Central Asian Livestock Farmers

    Get PDF
    Some indigenous goats in the Central Asian republics of Kazakstan, Kyrgyzstan and Tajikistan produce good quality cashmere (Millar 1986). International processors have recently been buying this cashmere. (Kerven et al., 2005), but Central Asian producers are not equipped to take full advantage of these new marketing opportunities. The U.S. AID Global Livestock-Collaborative Research Support Program project, Developing Institutions and capacity for sheep and fiber marketing in Central Asia is working to increase the income of small-scale livestock farmers through improved cashmere marketing

    Active Response Gravity Offload and Method

    Get PDF
    A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor

    Comparing self-reported ethnicity to genetic background measures in the context of the Multi-Ethnic Study of Atherosclerosis (MESA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Questions remain regarding the utility of self-reported ethnicity (SRE) in genetic and epidemiologic research. It is not clear whether conditioning on SRE provides adequate protection from inflated type I error rates due to population stratification and admixture. We address this question using data obtained from the Multi-Ethnic Study of Atherosclerosis (MESA), which enrolled individuals from 4 self-reported ethnic groups. We compare the agreement between SRE and genetic based measures of ancestry (GBMA), and conduct simulation studies based on observed MESA data to evaluate the performance of each measure under various conditions.</p> <p>Results</p> <p>Four clusters are identified using 96 ancestry informative markers. Three of these clusters are well delineated, but 30% of the self-reported Hispanic-Americans are misclassified. We also found that MESA SRE provides type I error rates that are consistent with the nominal levels. More extensive simulations revealed that this finding is likely due to the multi-ethnic nature of the MESA. Finally, we describe situations where SRE may perform as well as a GBMA in controlling the effect of population stratification and admixture in association tests.</p> <p>Conclusions</p> <p>The performance of SRE as a control variable in genetic association tests is more nuanced than previously thought, and may have more value than it is currently credited with, especially when smaller replication studies are being considered in multi-ethnic samples.</p

    Improved Water and Nutrient Management Through HighFrequency Irrigation

    Get PDF
    High frequency irrigation implies the uniform, frequent application of water to crops. The fequency may range from several irrigations per week to daily irrigation to even several irrigations per day in greenhouse and nursery settings. Most of the high frequency irrigation in the United States is through necessity; i.e., the limited water holding capacity of the soils or a limited water supply make irrigation application of more than a few centimeters impractical. Irrigation of field crops in sandy soils (such as in the Nebraska Sand Hills) with traveling or outer pivot sprinkler systems is a classic example of high frequency irrigation dictated by a limited water holding capacity. Another widespread use of high frequency irrigation is found in the various low pressure systems such as drip, trickle, bi-well, and bubbler. These systems deliver relatively small amounts of water to the root zone as a consequence of factors such as limited water, shallow soils, limited water holding capacity, and high erosion potential. The increased frequency of irrigation is not commonly a goal in itself, but several advantages of high frequency irrigation have been identified (Rawlins and Raats, 1975; Howell, et. al., 1976). These include: 1. Improved plant internal water balance, 2. Decreased drainage from the root zone, 3. Decreased runoff from the crop, 4. Decreased importance of soil hydraulic characteristics, 5. Improved salinity control, 6. Increased enhancement of rainfall utilization, 7. Reduction of high temperature stress, and 8. Reduction of nutrient leaching The results of these advantages are usually increased crop yield or quality, decreased water use, and decreased pollution from drainage and runoff. The yield expected under high frequency irrigation may not be signsficantly increased over well-managed conventional irrigation, but increased efficiency of water, energy, fertilizer, and labor make even modest yield increases important. Nutrient management is critical with high frequency irrigation. Nitrogen in particular is susceptible to loss from the root zone by leaching, so high frequency irrigation systems require frequent, light nitrogen applications. This is facilitated by distribution of nutrients through the irrigation system. Other chemicals such as soil fumigents for nematode control, systemic insecticides, and herbicides can also be injected into the irrigation system and applied very uniformly to the crop. This research was directed toward defining the best management practices for irrigation timing and fertilizer applications under high frequency irrigation. The specific objectives were to: 1. quantitatively determine plant nutrient requirements for specific crops grown under high frequency irrigation, under optimum soil-water metric potential, and 2. evaluate the impact of high frequency irrigation on water quality and water and energy consumption

    The use of plasmodes as a supplement to simulations: A simple example evaluating individual admixture estimation methodologies

    Get PDF
    With the advent of powerful computers, simulation studies are becoming an important tool in statistical methodology research. However, computer simulations of a specific process are only as good as our understanding of the underlying mechanisms. An attractive supplement to simulations is the use of plasmode datasets. Plasmodes are data sets that are generated by natural biologic processes, under experimental conditions that allow some aspect of the truth to be known. The benefit of the plasmode approach is that the data are generated through completely natural processes, thus circumventing the common concern of the realism and accuracy of computer simulated data. The estimation of admixture, or the proportion of an individual’s genome that originates from different founding populations, is a particularly difficult research endeavor that is well suited to the use of plasmodes. Current methods have been tested with simulations of complex populations where the underlying mechanisms such as the rate and distribution of recombination are not well understood. To demonstrate the utility of this method data derived from mouse crosses is used to evaluate the effectiveness of several admixture estimation methodologies. Each cross shares a common founding population so that the ancestry proportion for each individual is known, allowing for the comparison of true and estimated individual admixture values. Analysis shows that the different estimation methodologies (Structure, AdmixMap and FRAPPE) examined all perform well with simple datasets. However, the performance of the estimation methodologies varied greatly when applied to a plasmode consisting of three founding populations. The results of these examples illustrate the utility of plasmodes in the evaluation of statistical genetics methodologies

    Legume Crops Phylogeny and Genetic Diversity for Science and Breeding

    Get PDF
    Economically, legumes (Fabaceae) represent the second most important family of crop plants after the grass family, Poaceae. Grain legumes account for 27% of world crop production and provide 33% of the dietary protein consumed by humans, while pasture and forage legumes provide vital part of animal feed. Fabaceae, the third largest family of flowering plants, has traditionally been divided into the following three subfamilies: Caesalpinioideae, Mimosoideae, and Papilionoideae, all together with 800 genera and 20,000 species. The latter subfamily contains most of the major cultivated food and feed crops. Among the grain legumes are some of mankind's earliest crop plants, whose domestication parallelled that of cereals: Soybean in China; faba bean, lentil, chickpea and pea in the Fertile Crescent of the Near East; cowpeas and bambara groundnut in Africa; soybean and mungbeans in East Asia; pigeonpea and the grams in South Asia; and common bean, lima bean, scarlet runner bean, tepary bean and lupin in Central and South America. The importance of legumes is evidenced by their high representation in ex situ germplasm collections, with more than 1,000,000 accessions worldwide. A detailed knowledge of the phylogenetic relationships of the Fabaceae is essential for understanding the origin and diversification of this economically and ecologically important family of angiosperms. This review aims to combine the phylogenetic and genetic diversity approaches to better illustrate the origin, domestication history and preserved germplasm of major legume crops from 13 genera of six tribes and to indicate further potential both for science and agriculture.</p
    corecore