297 research outputs found

    Measurement of Residual Stresses Around a Circular Patch Weld Using Barkhausen Noise

    Get PDF
    Welding is a common means of joining and repairing steel structures. In the case of steel tanks, circular patch welds are often used for repairing the structure after removal of a defective area. Unfortunately, the welding process also produces residual stresses which, if not relieved, can impair the integrity of the structure. Measurement of residual stresses produced by welding is needed, for example, to verify the effectiveness of a stress relief heat treatment which is typically used to remove weld-induced stresses

    Simulated Learning for Clinical Skill Acquisition and Retention: Report on a Research Project with Trainee Medical Interns

    Get PDF
    This paper reports on a research project conducted at the Advanced Clinical Skills Centre, University of Auckland, to determine whether the provision of a carefully engineered integrated virtual reality simulator for male and female urinary catheter insertion would increase student confidence levels and competency for those two skills. We present a literature review that demonstrates the increasing importance of simulation in medical education whilst detailing the perceived benefits and drawbacks of using simulations in medical education. We then present our research methodology including student numbers, procedures followed during the research, forms of evaluation carried out during the research and the current research stage. We conclude with the difficulties encountered in our study and a statement concerning the current status of our research

    Intracellular pH Modulates Taste Receptor Cell Volume and the Phasic Part of the Chorda Tympani Response to Acids

    Get PDF
    The relationship between cell volume and the neural response to acidic stimuli was investigated by simultaneous measurements of intracellular pH (pHi) and cell volume in polarized fungiform taste receptor cells (TRCs) using 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) in vitro and by rat chorda tympani (CT) nerve recordings in vivo. CT responses to HCl and CO2 were recorded in the presence of 1 M mannitol and specific probes for filamentous (F) actin (phalloidin) and monomeric (G) actin (cytochalasin B) under lingual voltage clamp. Acidic stimuli reversibly decrease TRC pHi and cell volume. In isolated TRCs F-actin and G-actin were labeled with rhodamine phalloidin and bovine pancreatic deoxyribonuclease-1 conjugated with Alexa Fluor 488, respectively. A decrease in pHi shifted the equilibrium from F-actin to G-actin. Treatment with phalloidin or cytochalasin B attenuated the magnitude of the pHi-induced decrease in TRC volume. The phasic part of the CT response to HCl or CO2 was significantly decreased by preshrinking TRCs with hypertonic mannitol and lingual application of 1.2 mM phalloidin or 20 μM cytochalasin B with no effect on the tonic part of the CT response. In TRCs first treated with cytochalasin B, the decrease in the magnitude of the phasic response to acidic stimuli was reversed by phalloidin treatment. The pHi-induced decrease in TRC volume induced a flufenamic acid–sensitive nonselective basolateral cation conductance. Channel activity was enhanced at positive lingual clamp voltages. Lingual application of flufenamic acid decreased the magnitude of the phasic part of the CT response to HCl and CO2. Flufenamic acid and hypertonic mannitol were additive in inhibiting the phasic response. We conclude that a decrease in pHi induces TRC shrinkage through its effect on the actin cytoskeleton and activates a flufenamic acid–sensitive basolateral cation conductance that is involved in eliciting the phasic part of the CT response to acidic stimuli

    Evaluation of fatigue damage in steel structural components by magnetoelastic Barkhausen signal analysis

    Get PDF
    This paper is concerned with using a magnetic technique for the evaluation of fatigue damage in steel structural components. It is shown that Barkhausen effect measurements can be used to indicate impending failure due to fatigue under certain conditions. The Barkhausen signal amplitude is known to be highly sensitive to changes in density and distribution of dislocations in materials. The sensitivity of Barkhausen signal amplitude to fatigue damage has been studied in the low‐cycle fatigue regime using smooth tensile specimens of a medium strength steel. The Barkhausen measurements were taken at depths of penetration of 0.02, 0.07, and 0.2 mm. It was found that changes in magnetic properties are sensitive to microstructural changes taking place at the surface of the material throughout the fatigue life. The changes in the Barkhausen signals have been attributed to distribution of dislocations in stage I and stage II of fatigue life and the formation of a macrocrack in the final stage of fatigue

    Language and sociability: insights from Williams syndrome

    Get PDF
    One of the most compelling features of Williams syndrome (WS) is the widely reported excessive sociability, accompanied by a relative proficiency in expressive language, which stands in stark contrast with significant intellectual and nonverbal impairments. It has been proposed that the unique language skills observed in WS are implicated in the strong drive to interact and communicate with others, which has been widely documented in WS. Nevertheless, this proposition has yet to be empirically examined. The present study aimed at investigating the relationship between a brain index of language processing and judgments of approachability of faces, as a proxy for sociability, in individuals with WS as contrasted to typical controls. Results revealed a significant and substantial association between the two in the WS, but not in the control group, supporting the hitherto untested notion that language use in WS might be uniquely related to their excessive social drive

    Efficient ion acceleration and dense electron-positron plasma creation in ultra-high intensity laser-solid interactions

    Get PDF
    The radiation pressure of next generation ultra-high intensity (>1023>10^{23} W/cm2^{2}) lasers could efficiently accelerate ions to GeV energies. However, nonlinear quantum-electrodynamic effects play an important role in the interaction of these laser pulses with matter. Here we show that these effects may lead to the production of an extremely dense (1024\sim10^{24} cm3^{-3}) pair-plasma which absorbs the laser pulse consequently reducing the accelerated ion energy and energy conversion efficiency by up to 30-50\%

    Advantage of Hole Stimulus in Rivalry Competition

    Get PDF
    Mounting psychophysical evidence suggests that early visual computations are sensitive to the topological properties of stimuli, such as the determination of whether the object has a hole or not. Previous studies have demonstrated that the hole feature took some advantages during conscious perception. In this study, we investigate whether there exists a privileged processing for hole stimuli during unconscious perception. By applying a continuous flash suppression paradigm, the target was gradually introduced to one eye to compete against a flashed full contrast Mondrian pattern which was presented to the other eye. This method ensured that the target image was suppressed during the initial perceptual period. We compared the initial suppressed duration between the stimuli with and without the hole feature and found that hole stimuli required less time than no-hole stimuli to gain dominance against the identical suppression noise. These results suggest the hole feature could be processed in the absence of awareness, and there exists a privileged detection of hole stimuli during suppressed phase in the interocular rivalry
    corecore