217 research outputs found

    Random on-board pixel sampling (ROPS) X-ray Camera

    Full text link
    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.Comment: 9 pages, 6 figures, Presented in 19th iWoRI

    Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    Get PDF
    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s(−1) and 5000 s(−1) strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imaged via phase-contrast imaging. It is also shown that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffraction via in-house software (WBXRD_GUI). Of current interest is the ability to evaluate crystal d-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates

    An Efficient Molecular Dynamics Scheme for the Calculation of Dopant Profiles due to Ion Implantation

    Get PDF
    We present a highly efficient molecular dynamics scheme for calculating the concentration depth profile of dopants in ion irradiated materials. The scheme incorporates several methods for reducing the computational overhead, plus a rare event algorithm that allows statistically reliable results to be obtained over a range of several orders of magnitude in the dopant concentration. We give examples of using this scheme for calculating concentration profiles of dopants in crystalline silicon. Here we can predict the experimental profile over five orders of magnitude for both channeling and non-channeling implants at energies up to 100s of keV. The scheme has advantages over binary collision approximation (BCA) simulations, in that it does not rely on a large set of empirically fitted parameters. Although our scheme has a greater computational overhead than the BCA, it is far superior in the low ion energy regime, where the BCA scheme becomes invalid.Comment: 17 pages, 21 figures, 2 tables. See: http://bifrost.lanl.gov/~reed

    Pseudo-unitary symmetry and the Gaussian pseudo-unitary ensemble of random matrices

    Full text link
    Employing the currently discussed notion of pseudo-Hermiticity, we define a pseudo-unitary group. Further, we develop a random matrix theory which is invariant under such a group and call this ensemble of pseudo-Hermitian random matrices as the pseudo-unitary ensemble. We obtain exact results for the nearest-neighbour level spacing distribution for (2 X 2) PT-symmetric Hamiltonian matrices which has a novel form, s log (1/s) near zero spacing. This shows a level repulsion in marked distinction with an algebraic form in the Wigner surmise. We believe that this paves way for a description of varied phenomena in two-dimensional statistical mechanics, quantum chromodynamics, and so on.Comment: 9 pages, 2 figures, LaTeX, submitted to the Physical Review Letters on August 20, 200

    A monoclonal antibody against annexin A2 targets stem and progenitor cell fractions in tumors.

    Get PDF
    The involvement of cancer stem cells (CSCs) in driving tumor dormancy and drug resistance is well established. Most therapeutic regimens however are ineffective in targeting these regenerative populations. We report the development and evaluation of a monoclonal antibody, mAb150, which targets the metastasis associated antigen, Annexin A2 (AnxA2) through recognition of a N-terminal epitope. Treatment with mAb150 potentiated re-entry of CSCs into the cell cycle that perturbed tumor dormancy and facilitated targeting of CSCs as was validated by in vitro and in vivo assays. Epigenetic potentiation further improved mAb150 efficacy in achieving total tumor regression by targeting regenerative populations to achieve tumor regression, specifically in high-grade serous ovarian adenocarcinoma

    Supersymmetric Many-particle Quantum Systems with Inverse-square Interactions

    Full text link
    The development in the study of supersymmetric many-particle quantum systems with inverse-square interactions is reviewed. The main emphasis is on quantum systems with dynamical OSp(2|2) supersymmetry. Several results related to exactly solved supersymmetric rational Calogero model, including shape invariance, equivalence to a system of free superoscillators and non-uniqueness in the construction of the Hamiltonian, are presented in some detail. This review also includes a formulation of pseudo-hermitian supersymmetric quantum systems with a special emphasis on rational Calogero model. There are quite a few number of many-particle quantum systems with inverse-square interactions which are not exactly solved for a complete set of states in spite of the construction of infinitely many exact eigen functions and eigenvalues. The Calogero-Marchioro model with dynamical SU(1,1|2) supersymmetry and a quantum system related to short-range Dyson model belong to this class and certain aspects of these models are reviewed. Several other related and important developments are briefly summarized.Comment: LateX, 65 pages, Added Acknowledgment, Discussions and References, Version to appear in Jouranl of Physics A: Mathematical and Theoretical (Commissioned Topical Review Article

    Quantum chaos, random matrix theory, and statistical mechanics in two dimensions - a unified approach

    Full text link
    We present a theory where the statistical mechanics for dilute ideal gases can be derived from random matrix approach. We show the connection of this approach with Srednicki approach which connects Berry conjecture with statistical mechanics. We further establish a link between Berry conjecture and random matrix theory, thus providing a unified edifice for quantum chaos, random matrix theory, and statistical mechanics. In the course of arguing for these connections, we observe sum rules associated with the outstanding counting problem in the theory of braid groups. We are able to show that the presented approach leads to the second law of thermodynamics.Comment: 23 pages, TeX typ

    Fermentation, Isolation, Structure, and antidiabetic activity of NFAT-133 produced by Streptomyces strain PM0324667

    Get PDF
    Type-2 diabetes is mediated by defects in either insulin secretion or insulin action. In an effort to identify extracts that may stimulate glucose uptake, similar to insulin, a high throughput-screening assay for measuring glucose uptake in skeletal muscle cells was established. During the screening studies to discover novel antidiabetic compounds from microbial resources a Streptomyces strain PM0324667 (MTCC 5543, the Strain accession number at Institute of Microbial Technology, Chandigarh, India), an isolate from arid soil was identified which expressed a secondary metabolite that induced glucose uptake in L6 skeletal muscle cells. By employing bioactivity guided fractionation techniques, a tri-substituted simple aromatic compound with anti-diabetic potential was isolated. It was characterized based on MS and 2D NMR spectral data and identified as NFAT-133 which is a known immunosuppressive agent that inhibits NFAT-dependent transcription in vitro. Our investigations revealed the antidiabetic potential of NFAT-133. The compound induced glucose uptake in differentiated L6 myotubes with an EC50 of 6.3 ± 1.8 μM without activating the peroxisome proliferator-activated receptor-γ. Further, NFAT-133 was also efficacious in vivo in diabetic animals and reduced systemic glucose levels. Thus it is a potential lead compound which can be considered for development as a therapeutic for the treatment of type-2 diabetes. We have reported herewith the isolation of the producer microbe, fermentation, purification, in vitro, and in vivo antidiabetic activity of the compound
    • …
    corecore