15,860 research outputs found

    Scaling regimes and critical dimensions in the Kardar-Parisi-Zhang problem

    Full text link
    We study the scaling regimes for the Kardar-Parisi-Zhang equation with noise correlator R(q) ~ (1 + w q^{-2 \rho}) in Fourier space, as a function of \rho and the spatial dimension d. By means of a stochastic Cole-Hopf transformation, the critical and correction-to-scaling exponents at the roughening transition are determined to all orders in a (d - d_c) expansion. We also argue that there is a intriguing possibility that the rough phases above and below the lower critical dimension d_c = 2 (1 + \rho) are genuinely different which could lead to a re-interpretation of results in the literature.Comment: Latex, 7 pages, eps files for two figures as well as Europhys. Lett. style files included; slightly expanded reincarnatio

    Drived diffusion of vector fields

    Get PDF
    A model for the diffusion of vector fields driven by external forces is proposed. Using the renormalization group and the ϵ\epsilon-expansion, the dynamical critical properties of the model with gaussian noise for dimensions below the critical dimension are investigated and new transport universality classes are obtained.Comment: 11 pages, title changed, anisotropic diffusion further discussed and emphasize

    Microscopic Non-Universality versus Macroscopic Universality in Algorithms for Critical Dynamics

    Full text link
    We study relaxation processes in spin systems near criticality after a quench from a high-temperature initial state. Special attention is paid to the stage where universal behavior, with increasing order parameter emerges from an early non-universal period. We compare various algorithms, lattice types, and updating schemes and find in each case the same universal behavior at macroscopic times, despite of surprising differences during the early non-universal stages.Comment: 9 pages, 3 figures, RevTeX, submitted to Phys. Rev. Let

    Spontaneous Symmetry Breaking in Directed Percolation with Many Colors: Differentiation of Species in the Gribov Process

    Full text link
    A general field theoretic model of directed percolation with many colors that is equivalent to a population model (Gribov process) with many species near their extinction thresholds is presented. It is shown that the multicritical behavior is always described by the well known exponents of Reggeon field theory. In addition this universal model shows an instability that leads in general to a total asymmetry between each pair of species of a cooperative society.Comment: 4 pages, 2 Postscript figures, uses multicol.sty, submitte

    Fresh look at randomly branched polymers

    Full text link
    We develop a new, dynamical field theory of isotropic randomly branched polymers, and we use this model in conjunction with the renormalization group (RG) to study several prominent problems in the physics of these polymers. Our model provides an alternative vantage point to understand the swollen phase via dimensional reduction. We reveal a hidden Becchi-Rouet-Stora (BRS) symmetry of the model that describes the collapse (θ\theta-)transition to compact polymer-conformations, and calculate the critical exponents to 2-loop order. It turns out that the long-standing 1-loop results for these exponents are not entirely correct. A runaway of the RG flow indicates that the so-called θ\theta^\prime-transition could be a fluctuation induced first order transition.Comment: 4 page

    On Critical Exponents and the Renormalization of the Coupling Constant in Growth Models with Surface Diffusion

    Full text link
    It is shown by the method of renormalized field theory that in contrast to a statement based on a mathematically ill-defined invariance transformation and found in most of the recent publications on growth models with surface diffusion, the coupling constant of these models renormalizes nontrivially. This implies that the widely accepted supposedly exact scaling exponents are to be corrected. A two-loop calculation shows that the corrections are small and these exponents seem to be very good approximations.Comment: 4 pages, revtex, 2 postscript figures, to appear in Phys.Rev.Let

    Renormalized field theory and particle density profile in driven diffusive systems with open boundaries

    Full text link
    We investigate the density profile in a driven diffusive system caused by a plane particle source perpendicular to the driving force. Focussing on the case of critical bulk density cˉ\bar{c} we use a field theoretic renormalization group approach to calculate the density c(z)c(z) as a function of the distance from the particle source at first order in ϵ=2d\epsilon=2-d (dd: spatial dimension). For d=1d=1 we find reasonable agreement with the exact solution recently obtained for the asymmetric exclusion model. Logarithmic corrections to the mean field profile are computed for d=2d=2 with the result c(z)cˉz1(ln(z))2/3c(z)-\bar{c} \sim z^{-1} (\ln(z))^{2/3} for zz \rightarrow \infty.Comment: 32 pages, RevTex, 4 Postscript figures, to appear in Phys. Rev.

    Mean-field scaling function of the universality class of absorbing phase transitions with a conserved field

    Full text link
    We consider two mean-field like models which belong to the universality class of absorbing phase transitions with a conserved field. In both cases we derive analytically the order parameter as function of the control parameter and of an external field conjugated to the order parameter. This allows us to calculate the universal scaling function of the mean-field behavior. The obtained universal function is in perfect agreement with recently obtained numerical data of the corresponding five and six dimensional models, showing that four is the upper critical dimension of this particular universality class.Comment: 8 pages, 2 figures, accepted for publication in J. Phys.

    Differential thermal analysis and solution growth of intermetallic compounds

    Get PDF
    To obtain single crystals by solution growth, an exposed primary solidification surface in the appropriate, but often unknown, equilibrium alloy phase diagram is required. Furthermore, an appropriate crucible material is needed, necessary to hold the molten alloy during growth, without being attacked by it. Recently, we have used the comparison of realistic simulations with experimental differential thermal analysis (DTA) curves to address both these problems. We have found: 1) complex DTA curves can be interpreted to determine an appropriate heat treatment and starting composition for solution growth, without having to determine the underlying phase diagrams in detail. 2) DTA can facilitate identification of appropriate crucible materials. DTA can thus be used to make the procedure to obtain single crystals of a desired phase by solution growth more efficient. We will use some of the systems for which we have recently obtained single-crystalline samples using the combination of DTA and solution growth as examples. These systems are TbAl, Pr7_7Ni2_2Si5_5, and YMn4_4Al8_8.Comment: 17 pages, 8 figure

    Transport on Directed Percolation Clusters

    Full text link
    We study random lattice networks consisting of resistor like and diode like bonds. For investigating the transport properties of these random resistor diode networks we introduce a field theoretic Hamiltonian amenable to renormalization group analysis. We focus on the average two-port resistance at the transition from the nonpercolating to the directed percolating phase and calculate the corresponding resistance exponent ϕ\phi to two-loop order. Moreover, we determine the backbone dimension DBD_B of directed percolation clusters to two-loop order. We obtain a scaling relation for DBD_B that is in agreement with well known scaling arguments.Comment: 4 page
    corecore