3,615 research outputs found
Consistent model of magnetism in ferropnictides
The discovery of superconductivity in LaFeAsO introduced the ferropnictides
as a major new class of superconducting compounds with critical temperatures
second only to cuprates. The presence of magnetic iron makes ferropnictides
radically different from cuprates. Antiferromagnetism of the parent compounds
strongly suggests that superconductivity and magnetism are closely related.
However, the character of magnetic interactions and spin fluctuations in
ferropnictides, in spite of vigorous efforts, has until now resisted
understanding within any conventional model of magnetism. Here we show that the
most puzzling features can be naturally reconciled within a rather simple
effective spin model with biquadratic interactions, which is consistent with
electronic structure calculations. By going beyond the Heisenberg model, this
description explains numerous experimentally observed properties, including the
peculiarities of the spin wave spectrum, thin domain walls, crossover from
first to second order phase transition under doping in some compounds, and
offers new insight in the occurrence of the nematic phase above the
antiferromagnetic phase transition.Comment: 5 pages, 3 figures, revtex
Diagnosis-specific effect of familial loading on verbal working memory in schizophrenia
Working memory disturbances are a frequently replicated finding in schizophrenia and less consistent also in schizoaffective disorder. Working memory dysfunctions have been shown to be heritable and have been proposed to represent a promising endophenotype of schizophrenic psychoses. In the present study, we investigated the effects of familial loading on performance rates in circuit-specific verbal and visuospatial working memory tasks in matched samples of schizophrenic patients (from multiply affected or uniaffected families), schizoaffective patients (from multiply affected or uniaffected families), and healthy subjects. We found a significant interaction effect between familial loading and diagnosis in terms of a diagnosis-specific detrimental effect of familial loading on the performance of schizophrenic (but not schizoaffective) patients in the articulatory rehearsal task. This finding of a circuit-specific verbal working memory deficit in schizophrenic patients with additional familial loading is consistent with prior studies, which provided evidence for the existence of specific subgroups of schizophrenic patients with selective working memory impairments and for diagnosis-specific dysfunctions of the articulatory rehearsal mechanism in schizophrenic, but not in schizoaffective patients. Together, these findings suggest that the genetic risk for (a subtype of) schizophrenia may be associated with dysfunctions of the brain system, which underlies the articulatory rehearsal mechanism, the probably phylogenetically youngest part of human working memory
AdS_3/LCFT_2 - Correlators in Cosmological Topologically Massive Gravity
For cosmological topologically massive gravity at the chiral point we
calculate momentum space 2- and 3-point correlators of operators in the
postulated dual CFT on the cylinder. These operators are sourced by the bulk
and boundary gravitons. Our correlators are fully consistent with the proposal
that cosmological topologically massive gravity at the chiral point is dual to
a logarithmic CFT. In the process we give a complete classification of
normalizable and non-normalizeable left, right and logarithmic solutions to the
linearized equations of motion in global AdS_3.Comment: 39 pages + appendices, 1 eps figure, v2: minor changes in text in
4.1.2, corrected typo in (2.31
Observation of coherent many-body Rabi oscillations
A two-level quantum system coherently driven by a resonant electromagnetic
field oscillates sinusoidally between the two levels at frequency
which is proportional to the field amplitude [1]. This phenomenon, known as the
Rabi oscillation, has been at the heart of atomic, molecular and optical
physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi
oscillations in isolated single atoms or dilute gases form the basis for
metrological applications such as atomic clocks and precision measurements of
physical constants [3]. Both inhomogeneous distribution of coupling strength to
the field and interactions between individual atoms reduce the visibility of
the oscillation and may even suppress it completely. A remarkable
transformation takes place in the limit where only a single excitation can be
present in the sample due to either initial conditions or atomic interactions:
there arises a collective, many-body Rabi oscillation at a frequency
involving all N >> 1 atoms in the sample [4]. This is true even
for inhomogeneous atom-field coupling distributions, where single-atom Rabi
oscillations may be invisible. When one of the two levels is a strongly
interacting Rydberg level, many-body Rabi oscillations emerge as a consequence
of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to
quantum information processing based on this effect [5]. Here we report initial
observations of coherent many-body Rabi oscillations between the ground level
and a Rydberg level using several hundred cold rubidium atoms. The strongly
pronounced oscillations indicate a nearly complete excitation blockade of the
entire mesoscopic ensemble by a single excited atom. The results pave the way
towards quantum computation and simulation using ensembles of atoms
Modeling of Protostellar Clouds and their Observational Properties
A physical model and two-dimensional numerical method for computing the
evolution and spectra of protostellar clouds are described. The physical model
is based on a system of magneto-gasdynamical equations, including ohmic and
ambipolar diffusion, and a scheme for calculating the thermal and ionization
structure of a cloud. The dust and gas temperatures are determined during the
calculations of the thermal structure of the cloud. The results of computing
the dynamical and thermal structure of the cloud are used to model the
radiative transfer in continuum and in molecular lines. We presented the
results for clouds in hydrostatic and thermal equilibrium. The evolution of a
rotating magnetic protostellar cloud starting from a quasi-static state is also
considered. Spectral maps for optically thick lines of linear molecules are
analyzed. We have shown that the influence of the magnetic field and rotation
can lead to a redistribution of angular momentum in the cloud and the formation
of a characteristic rotational velocity structure. As a result, the
distribution of the velocity centroid of the molecular lines can acquire an
hourglass shape. We plan to use the developed program package together with a
model for the chemical evolution to interpret and model observed starless and
protostellar cores.Comment: Accepted to Astronomy Report
A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices
Improvement of thermoelectric systems in terms of performance and range of
applications relies on progress in materials science and optimization of device
operation. In this chapter, we focuse on optimization by taking into account
the interaction of the system with its environment. For this purpose, we
consider the illustrative case of a thermoelectric generator coupled to two
temperature baths via heat exchangers characterized by a thermal resistance,
and we analyze its working conditions. Our main message is that both electrical
and thermal impedance matching conditions must be met for optimal device
performance. Our analysis is fundamentally based on linear nonequilibrium
thermodynamics using the force-flux formalism. An outlook on mesoscopic systems
is also given.Comment: Chapter 14 in "Thermoelectric Nanomaterials", Editors Kunihito
Koumoto and Takao Mori, Springer Series in Materials Science Volume 182
(2013
Second order QCD corrections to inclusive semileptonic b \to Xc l \bar \nu_l decays with massless and massive lepton
We extend previous computations of the second order QCD corrections to
semileptonic b \to c inclusive transitions, to the case where the charged
lepton in the final state is massive. This allows accurate description of b \to
c \tau \bar \nu_\tau decays. We review techniques used in the computation of
O(\alpha_s^2) corrections to inclusive semileptonic b \to c transitions and
present extensive numerical studies of O(\alpha_s^2) QCD corrections to b \to c
l \bar \nu_l decays, for l =e, \tau.Comment: 30 pages, 4 figures, 5 table
Brucellosis remains a neglected disease inthe developing world: a call forinterdisciplinary action
Brucellosis places significant burdens on the human healthcare system and limits the economic growth of individuals, communities, and nations where such development is especially important to diminish the prevalence of poverty. The implementation of public policy focused on mitigating the socioeconomic effects of brucellosis in human and animal populations is desperately needed. When developing a plan to mitigate the associated consequences, it is vital to consider both the abstract and quantifiable effects. This requires an interdisciplinary and collaborative, or One Health, approach that consists of public education, the development of an infrastructure for disease surveillance and reporting in both veterinary and medical fields, and campaigns for control in livestock and wildlife species
The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76
The {\sc Majorana} collaboration is searching for neutrinoless double beta
decay using Ge, which has been shown to have a number of advantages in
terms of sensitivities and backgrounds. The observation of neutrinoless
double-beta decay would show that lepton number is violated and that neutrinos
are Majorana particles and would simultaneously provide information on neutrino
mass. Attaining sensitivities for neutrino masses in the inverted hierarchy
region, meV, will require large, tonne-scale detectors with extremely
low backgrounds, at the level of 1 count/t-y or lower in the region of
the signal. The {\sc Majorana} collaboration, with funding support from DOE
Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the
{\sc Demonstrator}, an array consisting of 40 kg of p-type point-contact
high-purity germanium (HPGe) detectors, of which 30 kg will be enriched
to 87% in Ge. The {\sc Demonstrator} is being constructed in a clean
room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford
Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded
shield approach with the inner portion consisting of ultra-clean Cu that is
being electroformed and machined underground. The primary aim of the {\sc
Demonstrator} is to show the feasibility of a future tonne-scale measurement in
terms of backgrounds and scalability.Comment: Proceedings for the MEDEX 2013 Conferenc
- …