2,294 research outputs found

    Accuracy of peak VO2 assessments in career firefighters

    Get PDF
    Abstract Background Sudden cardiac death is the leading cause of on-duty death in United States firefighters. Accurately assessing cardiopulmonary capacity is critical to preventing, or reducing, cardiovascular events in this population. Methods A total of 83 male firefighters performed Wellness-Fitness Initiative (WFI) maximal exercise treadmill tests and direct peak VO2 assessments to volitional fatigue. Of the 83, 63 completed WFI sub-maximal exercise treadmill tests for comparison to directly measured peak VO2 and historical estimations. Results Maximal heart rates were overestimated by the traditional 220-age equation by about 5 beats per minute (p < .001). Peak VO2 was overestimated by the WFI maximal exercise treadmill and the historical WFI sub-maximal estimation by ~ 1MET and ~ 2 METs, respectively (p < 0.001). The revised 2008 WFI sub-maximal treadmill estimation was found to accurately estimate peak VO2 when compared to directly measured peak VO2. Conclusion Accurate assessment of cardiopulmonary capacity is critical in determining appropriate duty assignments, and identification of potential cardiovascular problems, for firefighters. Estimation of cardiopulmonary fitness improves using the revised 2008 WFI sub-maximal equation

    Towards More Accurate Molecular Dynamics Calculation of Thermal Conductivity. Case Study: GaN Bulk Crystals

    Full text link
    Significant differences exist among literature for thermal conductivity of various systems computed using molecular dynamics simulation. In some cases, unphysical results, for example, negative thermal conductivity, have been found. Using GaN as an example case and the direct non-equilibrium method, extensive molecular dynamics simulations and Monte Carlo analysis of the results have been carried out to quantify the uncertainty level of the molecular dynamics methods and to identify the conditions that can yield sufficiently accurate calculations of thermal conductivity. We found that the errors of the calculations are mainly due to the statistical thermal fluctuations. Extrapolating results to the limit of an infinite-size system tend to magnify the errors and occasionally lead to unphysical results. The error in bulk estimates can be reduced by performing longer time averages using properly selected systems over a range of sample lengths. If the errors in the conductivity estimates associated with each of the sample lengths are kept below a certain threshold, the likelihood of obtaining unphysical bulk values becomes insignificant. Using a Monte-Carlo approach developed here, we have determined the probability distributions for the bulk thermal conductivities obtained using the direct method. We also have observed a nonlinear effect that can become a source of significant errors. For the extremely accurate results presented here, we predict a [0001] GaN thermal conductivity of 185 W/Km\rm{W/K \cdot m} at 300 K, 102 W/Km\rm{W/K \cdot m} at 500 K, and 74 W/Km\rm{W/K \cdot m} at 800 K. Using the insights obtained in the work, we have achieved a corresponding error level (standard deviation) for the bulk (infinite sample length) GaN thermal conductivity of less than 10 W/Km\rm{W/K \cdot m}, 5 W/Km\rm{W/K \cdot m}, and 15 W/Km\rm{W/K \cdot m} at 300 K, 500 K, and 800 K respectively

    Nonthermal Emission from the Arches Cluster (G0.121+0.017) and the Origin of γ\gamma-ray Emission from 3EG J1746-2851

    Full text link
    High resolution VLA observations of the Arches cluster near the Galactic center show evidence of continuum emission at λ\lambda3.6, 6, 20 and 90cm. The continuum emission at λ\lambda90cm is particularly striking because thermal sources generally become optically thick at longer wavelengths and fall off in brightness whereas non-thermal sources increase in brightness. It is argued that the radio emission from this unique source has compact and diffuse components produced by thermal and nonthermal processes, respectively. Compact sources within the cluster arise from stellar winds of mass-losing stars (Lang, Goss & Rodriguez 2001a) whereas diffuse emission is likely to be due to colliding wind shocks of the cluster flow generating relativistic particles due to diffuse shock acceleration. We also discuss the possibility that γ\gamma-ray emission from 3EG J1746--2851, located within 3.3' of the Arches cluster, results from the inverse Compton scattering of the radiation field of the cluster.Comment: 15 pages, four figures, ApJL (in press

    Evidence for a Weak Galactic Center Magnetic Field from Diffuse Low Frequency Nonthermal Radio Emission

    Get PDF
    New low-frequency 74 and 330 MHz observations of the Galactic center (GC) region reveal the presence of a large-scale (6\arcdeg\times 2\arcdeg) diffuse source of nonthermal synchrotron emission. A minimum energy analysis of this emission yields a total energy of (ϕ4/7f3/7)×1052\sim (\phi^{4/7}f^{3/7})\times 10^{52} ergs and a magnetic field strength of 6(ϕ/f)2/7\sim 6(\phi/f)^{2/7} \muG (where ϕ\phi is the proton to electron energy ratio and ff is the filling factor of the synchrotron emitting gas). The equipartition particle energy density is 1.2(ϕ/f)2/71.2(\phi/f)^{2/7} \evcm, a value consistent with cosmic-ray data. However, the derived magnetic field is several orders of magnitude below the 1 mG field commonly invoked for the GC. With this field the source can be maintained with the SN rate inferred from the GC star formation. Furthermore, a strong magnetic field implies an abnormally low GC cosmic-ray energy density. We conclude that the mean magnetic field in the GC region must be weak, of order 10 \muG (at least on size scales \ga 125\arcsec).Comment: 12 pages, 1 JPEG figure, uses aastex.sty; Accepted for publication, ApJL (2005, published

    Impact of van der Waals forces on the classical shuttle instability

    Full text link
    The effects of including the van der Waals interaction in the modelling of the single electron shuttle have been investigated numerically. It is demonstrated that the relative strength of the vdW-forces and the elastic restoring forces determine the characteristics of the shuttle instability. In the case of weak elastic forces and low voltages the grain is trapped close to one lead, and this trapping can be overcome by Coulomb forces by applying a bias voltage VV larger than a threshold voltage VuV_{\rm u}. This allows for grain motion leading to an increase in current by several orders of magnitude above the transition voltage VuV_{\rm u}. Associated with the process is also hysteresis in the I-V characteristics.Comment: minor revisions, updated references, Article published in Phys. Rev. B 69, 035309 (2004

    Exploiting Cross Correlations and Joint Analyses

    Full text link
    In this report, we present a wide variety of ways in which information from multiple probes of dark energy may be combined to obtain additional information not accessible when they are considered separately. Fundamentally, because all major probes are affected by the underlying distribution of matter in the regions studied, there exist covariances between them that can provide information on cosmology. Combining multiple probes allows for more accurate (less contaminated by systematics) and more precise (since there is cosmological information encoded in cross-correlation statistics) measurements of dark energy. The potential of cross-correlation methods is only beginning to be realized. By bringing in information from other wavelengths, the capabilities of the existing probes of dark energy can be enhanced and systematic effects can be mitigated further. We present a mixture of work in progress and suggestions for future scientific efforts. Given the scope of future dark energy experiments, the greatest gains may only be realized with more coordination and cooperation between multiple project teams; we recommend that this interchange should begin sooner, rather than later, to maximize scientific gains.Comment: Report from the "Dark Energy and CMB" working group for the American Physical Society's Division of Particles and Fields long-term planning exercise ("Snowmass"

    Ancient coins: cluster analysis applied to find a correlation between corrosion process and burial soil characteristics

    Get PDF
    Although it is well known that any material degrades faster when exposed to an aggressive environment as well as that "aggressive" cannot be univocally defined as depending also on the chemical-physical characteristics of material, few researches on the identification of the most significant parameters influencing the corrosion of metallic object are available
    corecore