931 research outputs found
āŠļāŦāŠĩāŠūāŠŪāŠŋāŠĻāŠūāŠ°āŠūāŠŊāŠĢ āŠļāŠāŠŠāŦāŠ°āŠĶāŠūāŠŊāŠĻāŠū āŠĪāŠĪāŦāŠĩāŠāŦāŠāŠūāŠĻ āŠĶāŦāŠĩāŠūāŠ°āŠū āŠāŠūāŠ°āŠĪāŦāŠŊ āŠāŠĶāŦāŠŊāŦāŠāŠāŠ°āŦāŠĪāŠūāŠāŠĻāŦ āŠļāŠāŠāŠūāŠēāŠāŦāŠŊ āŠļāŠŪāŠļāŦāŠŊāŠūāŠāŠĻāŠū āŠāŠāŦāŠēāŠĻāŦ āŠ āŠāŦāŠŊāŠūāŠļ
āŠāŠūāŠ°āŠĪ āŠļāŦāŠĨāŦ āŠŠāŦāŠ°āŠūāŠāŦāŠĻ āŠ
āŠĻāŦ āŠĩāŦāŠĶāŠŋāŠ āŠļāŠāŠļāŦāŠāŦāŠĪāŠŋ āŠ
āŠĻāŦ āŠĩāŠŋāŠāŠūāŠ°āŠ§āŠūāŠ°āŠū āŠ§āŠ°āŠūāŠĩāŠĪāŦāŠ āŠļāŦāŠļāŠāŠļāŦāŠāŦāŠĪ āŠ°āŠūāŠ·āŦāŠāŦāŠ° āŠāŦ. āŠļāŦ āŠŠāŦāŠ°āŠĨāŠŪ āŠāŠūāŠ°āŠĪāŦ āŠļāŠŪāŠāŦāŠ° āŠĩāŠŋāŠķāŦāŠ°āŦāŠĩāŠĻāŦ āŠŪāŠūāŠĻāŠĩāŠāŦāŠĩāŠĻāŠĻāŦ āŠķāŠ°āŦāŠāŠĪāŠŪāŠūāŠ āŠļāŠāŠļāŦāŠāŠūāŠ°āŦāŠĪāŠū āŠ
āŠĻāŦ āŠķāŦāŠ°āŦāŠ·āŦāŠ āŠĪāŠŪ āŠĩāŠŋāŠāŠūāŠ°āŦāŠĻāŦ āŠ°āŠāŦāŠāŠĪ āŠāŠŠāŦ. āŠŪāŠ°āŦāŠŊāŠūāŠĶāŠŋāŠĪ āŠĩāŦāŠŊāŠūāŠŠāŠūāŠ°āŠāŦāŠ·āŦāŠĪāŦāŠ°āŠŪāŠūāŠāŠĨāŦ āŠāŠĪāŦāŠĪāŠ°āŦāŠĪāŦāŠĪāŠ° āŠŽāŦāŠ°āŠŋāŠāŦāŠķ āŠķāŠūāŠļāŠāŦāŠĻāŠū āŠĻāŦāŠāŠū āŠĻāŦāŠāŦ āŠĩāŠŋāŠķāŠūāŠģāŠŠāŠūāŠŊāŠū āŠŠāŠ° āŠāŠĪāŦāŠŠāŠūāŠĶāŠĻ āŠāŠ°āŦāŠĶ-āŠĩāŦāŠāŠāŠūāŠĢ āŠ
āŠĻāŦ āŠļāŠāŠāŠūāŠēāŠāŠŋāŠŊ āŠāŠūāŠŪāŠāŦāŠ°āŦ āŠ
āŠļāŦāŠĪāŠŋāŠĪāŦāŠĩāŠŪāŠūāŠ āŠāŠĩāŦ. āŠĪāŦāŠŪāŠ āŠŽāŦāŠ°āŠŋāŠāŦāŠķ āŠķāŠūāŠļāŠāŦāŠĻāŠū āŠķāŠūāŠļāŠĻāŠŪāŠūāŠ āŠāŠūāŠ°āŠĪāŠĻāŦ āŠāŠ°āŦāŠĨāŠŋāŠ, āŠļāŠūāŠŪāŠūāŠāŠŋāŠ, āŠ°āŠūāŠāŠāŠŋāŠŊ āŠŠāŠ°āŠŋāŠļāŦāŠĨāŠŋāŠĪāŠŋ āŠĩāŠ§āŦ āŠĩāŠŋāŠāŠ āŠŽāŠĻāŦ āŠ
āŠĻāŦ āŠāŠĶāŦāŠŊāŦāŠāŠŋāŠ āŠāŦāŠ°āŠūāŠāŠĪāŠŋāŠĻāŠū āŠŪāŠāŠĄāŠūāŠĢ āŠĨāŠĪāŠū āŠāŦāŠđāŠāŠĶāŦāŠŊāŦāŠāŦ āŠ
āŠĻāŦ āŠĻāŠūāŠĻāŠūāŠŠāŠūāŠŊāŠūāŠĻāŠū āŠ§āŠāŠ§āŠū-āŠāŠĶāŦāŠŊāŦāŠāŦāŠĻāŦ āŠ°āŠāŠūāŠļ āŠĨāŠŊāŦ. āŠāŠāŠūāŠĶāŦ āŠŠāŠāŦ āŠŠāŠĢ āŠāŠūāŠ°āŠĪāŠŪāŠūāŠ āŠŠāŠ°āŠĶāŦāŠķāŦ āŠĩāŠŋāŠāŠūāŠ°āŠ§āŠūāŠ°āŠū āŠ
āŠŪāŠēāŠŪāŠūāŠ āŠ°āŠđāŦāŠĪāŠū āŠāŠūāŠ°āŠĪ āŠĶāŦāŠķāŦ āŠĩāŠŋāŠāŠūāŠļ āŠĪāŦ āŠāŠ°āŦāŠŊāŦ āŠĪāŦāŠĻāŦ āŠļāŠūāŠĨāŦ āŠ
āŠŪāŦāŠ°āŠŋāŠāŠĻ āŠļāŠāŠāŠūāŠēāŠĻ āŠĩāŠŋāŠāŠūāŠ°āŠ§āŠūāŠ°āŠū āŠ
āŠĻāŦ āŠāŠūāŠŠāŠūāŠĻāŦāŠ āŠļāŠāŠāŠūāŠēāŠĻ āŠĩāŠŋāŠāŠūāŠ°āŠ§āŠūāŠ°āŠū āŠāŦāŠĩāŦ āŠĩāŠŋāŠĶāŦāŠķāŦ āŠĩāŠŋāŠāŠūāŠ°āŠ§āŠūāŠ°āŠūāŠĻāŦ āŠĩāŠŋāŠāŠūāŠļ āŠĨāŠŊāŦ, āŠŠāŠ°āŠāŠĪāŦ āŠļāŦāŠĨāŦ āŠŪāŦāŠāŦ āŠļāŠŪāŠļāŦāŠŊāŠūāŠ āŠĨāŠ āŠāŦ āŠāŠŠāŠĢāŠū āŠŪāŦāŠēāŦāŠŊāŦ, āŠļāŠŋāŠ§āŦāŠ§āŠūāŠāŠĪāŦ, āŠ°āŦāŠĪāŠŋāŠĻāŦāŠĪāŠŋ āŠĩāŠāŦāŠ°āŦāŠŪāŠūāŠ āŠŪāŦāŠģ āŠĩāŦāŠĶāŠŋāŠāŠŪāŦāŠēāŦāŠŊāŦ āŠ
āŠĻāŦ āŠļāŠāŠļāŦāŠāŠūāŠ°āŦāŠĪāŠū āŠŠāŠĄāŦ āŠđāŠĪāŦ. āŠāŦāŠŊāŠūāŠ°āŦ āŠŠāŠ°āŠĶāŦāŠķāŦ āŠĩāŠŋāŠāŠūāŠ°āŠ§āŠūāŠ°āŠū āŠļāŠūāŠĨāŦ āŠĪāŦāŠĻāŦ āŠļāŦāŠŪāŦāŠģ āŠĻ āŠđāŠĪāŦ. āŠŠāŠ°āŦāŠĢāŠūāŠŪāŦ āŠāŠĩāŦ āŠĩāŠŋāŠ·āŠŪ āŠŠāŠ°āŠŋāŠļāŦāŠĨāŠŋāŠĪāŠŋ āŠļāŠ°āŦāŠāŠūāŠĪāŠū āŠ§āŠāŠ§āŠūāŠāŦāŠŊ āŠŠāŠ°āŦāŠŊāŠūāŠĩāŠ°āŠĢāŠĻāŦ āŠŠāŠ°āŠĶāŦāŠķāŦ āŠĩāŠŋāŠāŠūāŠ°āŠ§āŠūāŠ°āŠū āŠŪāŠūāŠŦāŦāŠ āŠĻ āŠāŠĩāŦ āŠ
āŠĻāŦ āŠāŦāŠĶāŠ°āŠĪāŦ, āŠŪāŠūāŠĻāŠĩāŦāŠŊ āŠ
āŠĻāŦ āŠŽāŦāŠ§āŦāŠ§āŠŋāŠ āŠķāŠāŦāŠĪāŠŋ āŠđāŦāŠĩāŠū āŠāŠĪāŠūāŠ āŠāŠūāŠ°āŠĪāŠĶāŦāŠķ āŠļāŠāŠāŠūāŠēāŠĻ āŠāŦāŠ·āŦāŠĪāŦāŠ°āŦ āŠ
āŠēāŦāŠŠāŠĩāŠŋāŠāŠļāŠŋāŠĪ āŠ°āŠđāŦāŠŊāŦ. āŠŠāŦāŠ°āŠļāŦāŠĪāŦāŠĪ āŠķāŦāŠ§āŠĻāŠŋāŠŽāŠāŠ§ āŠĶāŦāŠĩāŠūāŠ°āŠū āŠļāŠāŠķāŦāŠ§āŠāŠĻāŦ āŠāŠĶāŦāŠķ āŠļāŦāŠĩāŠūāŠŪāŠŋāŠĻāŠūāŠ°āŠūāŠŊāŠĢ āŠļāŠāŠŠāŦāŠ°āŠĶāŠūāŠŊāŠĻāŦ āŠāŠĶāŦāŠāŠĩ āŠāŦāŠĩāŦ āŠ°āŦāŠĪāŦ āŠĨāŠŊāŦ āŠĪāŦāŠŪāŠ āŠķāŦāŠ°āŦāŠļāŠđāŠāŠūāŠĻāŠāŠĶāŠļāŦāŠĩāŠūāŠŪāŦāŠĻāŦāŠ āŠāŦāŠĩāŠĻ āŠ
āŠĻāŦ āŠĪāŦāŠŪāŠĻāŠū āŠĶāŦāŠĩāŠūāŠ°āŠū āŠāŠūāŠ°āŠĪāŠĻāŦ āŠŠāŠĩāŠŋāŠĪāŦāŠ°āŠāŦāŠŪāŦ āŠŠāŠ° āŠĨāŠŊāŦāŠē āŠŊāŦāŠāŠāŠūāŠ°āŦāŠŊāŠĻāŦ āŠļāŠāŠāŦāŠ·āŦāŠŠāŦāŠĪāŠŪāŠūāŠ āŠļāŠŪāŠāŠĩāŠūāŠĻāŦ āŠāŦ. āŠĪāŦāŠŪāŠĻāŦ āŠŪāŠūāŠĻāŦāŠ·āŦāŠēāŦāŠēāŠū, āŠāŠķāŦāŠ°āŦāŠĩāŠ°āŦāŠŊ, āŠāŠūāŠ°āŠŋāŠĪāŦāŠ°āŦāŠŊ, āŠĻāŦāŠĪāŠŋāŠāŠĪāŠū, āŠļāŠĶāŦāŠāŦāŠĢāŠŊāŦāŠāŦāŠĪ āŠāŠāŠ°āŠĢāŠāŠ° āŠāŦāŠĩāŠĻ āŠ
āŠĻāŦ āŠāŠĩāŠĻāŠĻāŠū āŠĶāŠ°āŦāŠ āŠŠāŠūāŠļāŠūāŠĻāŦ āŠļāŦāŠāŦāŠ·āŦāŠŪāŠāŠĢāŠūāŠĩāŠ āŠ
āŠĻāŦ āŠĪāŦāŠŪāŠĢāŦ āŠāŠŠāŦāŠē āŠĪāŠĪāŦāŠĩāŠāŦāŠāŠūāŠĻ āŠļāŦāŠĩāŠūāŠŪāŠŋāŠĻāŠūāŠ°āŠūāŠŊāŠĢ āŠļāŠūāŠđāŠŋāŠĪāŦāŠŊāŠĻāŠū āŠ
āŠāŦāŠŊāŠūāŠļ āŠĶāŦāŠĩāŠūāŠ°āŠū āŠļāŠāŠķāŦāŠ§āŠāŦ āŠ°āŠāŦ āŠāŠ°āŦāŠē āŠāŦ
Metabolic disposition of a monoterpene ketone, piperitenone, in rats: evidence for the formation of a known toxin,p-cresol
It was shown earlier that the monoterpene ketone, piperitenone (I) is one of the major metabolites of R-(+)-pulegone, a potent hepatotoxin. In the present studies, the metabolic disposition of piperitenone (I) was examined in rats. Piperitenone (I) was administered orally (400 mg/kg of the b. wt./day) to rats for 5 days. The following urinary metabolites were isolated and identified by various spectral analyses: p-cresol (VI), 6,7-dehydromenthofuran (III), p-mentha-1,3,5,8-tetraen-3-ol (IX), p-mentha-1, 3,5-triene-3, 8-diol (X), 5-hydroxypiperitenone (VIII), 7-hydroxypiperitenone (XI), 10-hydroxypiperitenone (XII), and 4-hydroxypiperitenone (VII). Incubation of piperitenone (I) with phenobarbital-induced rat liver microsomes in the presence of NADPH resulted in the formation of five metabolites which have been tentatively identified as metabolites III, VII, VIII, XI, XII, on the basis of gas chromatography retention time and gas chromatography-mass spectrometry analysis. Based on these results, a probable mechanism for the formation of p-cresol from piperitenone (I) via the intermediacy of metabolite III has been proposed
Incidence and distribution of congenital malformations clinically detected at birth: a prospective study at tertiary care hospital
Background: Congenital malformation represents defects in morphogenesis during early fetal life. Congenital anomalies account for 8-15% of perinatal deaths and 13-16% of neonatal deaths in India. The objective was to study overall and individual incidence and distribution of clinically detectable congenital malformations in newborns delivered at a tertiary hospital.Methods: The present study is a prospective study of all the newborns delivered at Obstetrics and Gynecology Department, New Civil Hospital, Surat, Gujarat, India for a period of one year from 1st January 2010 to 31st December 2010. Total 5518 consecutive births including both live born babies and still born babies were examined after taking verbal and written consent of their mothers for a visible structural anomalies to determine the overall incidence and distribution of congenital malformations. Data were statistically analyzed using SPSS software (trial version).Results: A total of 5518 babies were born out of which 75 were twins. Out of total 5518 newborns 5316 were live births and 202 were still births and out of 5316 live births 48 babies were malformed and out of 202 still births 20 babies were malformed. Total numbers of malformed babies were 68, so total point incidence of congenital anomalies turned out to be 1.23%. Out of total 5518 babies, 35 (0.63%) were having central nervous system malformations making its incidence of 6.34/1000 live births which turned out to be highest followed by gastrointestinal system (incidence of malformed babies: 5.44/1000 births) and genitor urinary system (incidence of malformed babies :1.09/1000 births). Commonest anomalies in central nervous system were meningomyelocele followed by hydrocephalus and anencephaly.Conclusions: From present study we conclude that incidence of congenital anomalies of CNS was highest amongst all types of congenital anomalies (meningomyelocele being the commonest). More emphasis should be given on prevention by regular antenatal care and avoidance of known teratogens and probable teratogenic agents
A study on incidence of congenital anomalies in new borns and their association with fetal factors: a prospective study
Background: Congenital malformation represents defects in morphogenesis during early fetal life. Congenital anomalies account for 8â15% of perinatal deaths and 13â16% of neonatal deaths in India. The objective was to study incidence of clinically detectable congenital malformations in new-borns delivered at a tertiary hospital and their association with fetal factors.Methods: The present study is a prospective study of all the newborns delivered at Obstetrics and Gynecology Department, New Civil Hospital, Surat for a period of one year from 1st January 2010 to 31st December 2010. Total 5518 consecutive births including both live born babies and still born babies were examined after taking verbal and written consent of their mothers for a visible structural anomalies to determine the overall incidence and distribution of congenital malformations and their association with fetal factors. Data were statistically analyzed using SPSS software (trial version).Results: A total of 5518 babies were born out of which 75 were twins. Total numbers of malformed babies were 68, so total point incidence of congenital anomalies turned out to be 1.23%. There were 2963 male new-borns, out of that 40 were congenitally malformed (1.34%) and out of 2555 female new-borns 28 were congenitally malformed (1.09%). No significant association was found between congenital malformation and sex of the child. Out of total 5518 new-borns 5316 were live births and 202 were still births and out of 5316 live births 48 babies were malformed and out of 202 still births 20 babies were malformed. Out of total 5518 new-borns 1227 had birth weight less than 1500 grams and out of them 12 (0.97%) babies were congenitally malformed. Out of 5518 new-borns 221 were preterm babies and out of 221 preterm babies 26 (12.32%) babies were congenitally malformed.Conclusions: From present study it has been concluded that congenital anomalies in new-borns were significantly associated with fetal factors like still birth, prematurity and low birth weight
Recommended from our members
Entropy Based Feature Selection For Multi-Relational NaÃŊve Bayesian Classifier
Current industries dataâs are stored in relation structures. In usual approach to mine these data, we often use to join several relations to form a single relation using foreign key links, which is known as flatten. Flatten may cause troubles such as time consuming, data redundancy and statistical skew on data. Hence, the critical issues arise that how to mine data directly on numerous relations. The solution of the given issue is the approach called multi-relational data mining (MRDM). Other issues are irrelevant or redundant attributes in a relation may not make contribution to classification accuracy. Thus, feature selection is an essential data pre- processing step in multi-relational data mining. By filtering out irrelevant or redundant features from relations for data mining, we improve classification accuracy, achieve good time performance, and improve comprehensibility of the models. We had proposed the entropy based feature selection method for Multi-relational NaÃŊve Bayesian Classifier. We have use method InfoDist and Pearsonâs Correlation parameters, which will be used to filter out irrelevant and redundant features from the multi-relational database and will enhance classification accuracy. We analyzed our algorithm over PKDD financial dataset and achieved the better accuracy compare to the existing features selection methods
- âĶ