86 research outputs found

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Inefficient purifying selection: the mammalian Y chromosome in the rodent genus Mus

    Full text link
    Two related genes with potentially similar functions, one on the Y chromosome and one on the X chromosome, were examined to determine if they evolved differently because of their chromosomal positions. Six hundred fifty-seven base pairs of coding sequence of Jarid1d ( Smcy ) on the Y chromosome and Jarid1c ( Smcx ) on the X chromosome were sequenced in 13 rodent taxa. An analysis of replacement and silent substitutions, using a counting method designed for samples with small evolutionary distances, showed a significant difference between the two genes. The different patterns of replacement and silent substitutions within Jarid1d and Jarid1c may be a result of evolutionary mechanisms that are particularly strong on the Y chromosome because of its unique properties. These findings are similar to results of previous studies of Y chromosomal genes in these and other mammalian taxa, suggesting that genes on the mammalian Y evolve in a chromosome-specific manner.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46987/1/335_2005_Article_50.pd

    Advances in Agrobacterium-mediated plant transformation with enphasys on soybean

    Full text link
    • 

    corecore