1,102 research outputs found
Ceftazidime: pharmacokinetics in young volunteers versus elderly patients and therapeutic efficacy with complicated urinary tract infections
Thirty-six urological patients (21 male, 15 female) aged 21 to 83 years with complicated and/or hospital-acquired urinary tract infections due to sensitive bacteria were treated with ceftazidime intravenously with a daily dose of 2 g bd over 5 to 17 days. Twenty-seven patients were followed for 1 to 4 weeks after therapy. Cure was observed in 41%, reinfection in 33% and relapse in 26% of the patients. Eradication of the original pathogen occurred in 74%. Five patients showed minor side effects: diarrhoea (2), nausea (1), rash (1), headache (1). No signs of renal, hepatic or haematological toxicity were observed. A pharmacokinetic study was performed in 13 elderly patients aged 63 to 83 years on day 1 of treatment and in 6 volunteers aged 24 to 32 years following administration of 2 g of ceftazidime as short intravenous infusion. The mean serum half life in 12 patients 2.9 h significantly higher than in volunteers (1.75 h). Serum concentrations in patients on day 7 of treatment, however, showed no accumulation when treated with a dosage of 2 g bd
Pharmacokinetics, in-vitro activity, therapeutic efficacy and clinical safety of aztreonam vs. cefotaxime in the treatment of complicated urinary tract infections
The minimal inhibitory concentrations (MICs) of aztreonam and cefotaxime were determined against 400 isolates from urological in-patients with complicated and/or hospital acquired urinary tract infections (UTI). Against the Gram-negative rods the activities of both antibiotics were comparable except for higher activity of aztreonam against Pseudomonas aeruginosa. The pharmacokinetic study in nine elderly patients showed a prolonged plasma half life of aztreonam (2.7 h) as compared to younger volunteers (1.6-1.9 h). In a prospective randomized study 39 urological patients with complicated and/or hospital acquired UTI were treated with 1 g aztreonam or cefotaxime iv twice daily for 4 to 15 days. Cure was obtained in 5 out of 18 patients in the aztreonam and 7 out of 20 patients in the cefotaxime group. There were 3 superinfections, 7 relapses and 3 reinfections in the aztreonam group and 1 failure, 1 superinfection, 6 relapses and 5 reinfections in the cefotaxime group. There was no significant difference in therapeutic efficacy between the two antibiotics. Both antibiotics were tolerated well and seem to be equally effective in the treatment of complicated UTI caused by sensitive organisms
High-performance liquid chromatography analysis of mezlocillin, piperacillin, their degradation products, and of ioxitalamic acid in plasma and urine of healthy volunteers
In plasma and urine of 10 healthy volunteers after intravenous administration of 4 g mezlocillin and piperacillin, respectively, the parent compounds as well as degradation products were assayed by high-performance liquid chromatography. Ioxitalamic acid, a renal contrast medium, was administered simultaneously, in order to measure the glomerular filtration rate, and to control the collection of 24-h urine. As metabolite of mezlocillin the corresponding penicilloic acid only was found, whereas in the case of piperacillin a further degradation product was observed. Half of the doses given was recovered in the urine as unchanged drugs, and in addition 5-10% as metabolites. No differences were found in the pharmacokinetic behaviour of both antibiotics
An evaluation of image feature detectors based on spatial density and temporal robustness in microsurgical image processing
Optical image processing is part of many applications used for brain surgeries. Microscope camera, or patient movement, like brain-movement through the pulse or a change in the liquor, can cause the image processing to fail. One option to compensate movement is feature detection and spatial allocation. This allocation is based on image features. The frame wise matched features are used to calculate the transformation matrix. The goal of this project was to evaluate different feature detectors based on spatial density and temporal robustness to reveal the most appropriate feature. The feature detectors included corner-, and blob-detectors and were applied on nine videos. These videos were taken during brain surgery with surgical microscopes and include the RGB channels. The evaluation showed that each detector detected up to 10 features for nine frames. The feature detector KAZE resulted in being the best feature detector in both density and robustness
Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates
We present a method for reading out the spin state of electrons in a quantum
dot that is robust against charge noise and can be used even when the electron
temperature exceeds the energy splitting between the states. The spin states
are first correlated to different charge states using a spin dependence of the
tunnel rates. A subsequent fast measurement of the charge on the dot then
reveals the original spin state. We experimentally demonstrate the method by
performing read-out of the two-electron spin states, achieving a single-shot
visibility of more than 80%. We find very long triplet-to-singlet relaxation
times (up to several milliseconds), with a strong dependence on in-plane
magnetic field.Comment: 4 pages, 4 figure
Automated vessel centerline extraction and diameter measurement in OCT Angiography
Optical Coherence Tomography Angiography (OCTA) is a non-invasive imaging technique that enables the visualizationof perfused vasculature in vivo. In ophthalmology,it allows the physician to monitor diseases affecting the vascular networks of the retina such as age-related macular degeneration or diabetic retinopathy. Due to the complexity of the vasculature in the retina,it is of interest to automatically extract vascular parameters which describe the condition of the vessels. Suitable parameters could improve the diagnosis and the treatment during the course of therapy.We present an automated algorithm tocompute the diameters of the vessels in en face OCTA images. After segmentingthe images, the vessel centerlinewascomputed using a thinningalgorithm.The centerline wasrefined by detecting invalid pixelssuch as spursandbycontinuing the centerline until the endsof the vessels. Lastly, the diameter wascomputed by dilating a discrete circle at the position of the centerline or by measuring the distance between both borders of the vessels. The developed algorithms were applied to in vivo images of human eyes. Certainly, no ground truth was available. Hence, a plausibility check was performed by comparing the measured diameters of two different layers of the retina (Superficial Vascular Complex (SVC) and Deep Vascular Complex (DVC)). Each layer exhibits a different characteristic vasculature.The algorithm clearly reflectedthe differences from both retinal layers. The measured diameters demonstrate that the DVC consists of more capillaries and considerably smaller vessels compared to the SVC.The presented method enables automated analysis of the retinal vasculature and forms thereby the basis for monitoringdiseases influencing the vasculature of the retina. The validation of the method using an artificial ground truth is still neede
Diesel exhaust-gas reforming for H2 addition to an aftertreatment unit
This is the post-print version of the final paper published in Chemical Engineering Journal. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The work described in this paper has been undertaken as part of the design of an integrated system comprising a diesel engine, an exhaust-gas fuel reformer and a NOx aftertreatment unit. The exhaust-gas reformer is used to provide hydrogen-rich reformate to the NOx aftertreatment unit, containing a hydrocarbon-SCR catalyst, in order to improve its NOx reduction activity at low exhaust-gas temperatures. The reformer configuration and operating parameters have been examined in order to optimise the performance of the hydrocarbon-SCR catalyst, which is promoted by the presence of H2 but inhibited by CO. The length of the catalyst bed inside the reformer is a key factor in determining the extent to which the water-gas shift reaction can contribute to the reforming process, and therefore strongly influences the proportions of CO and H2 in the reformate. However, it is also necessary for the reactant ratios at the reformer inlet to be controlled in response to changes in the engine operating conditions. In practice, this means that the rate of fuel addition to the reformer needs to be optimised for different exhaust gas compositions and space velocities
- …