121,497 research outputs found

    Compositional changes on GaN surfaces under low-energy ion bombardment studied by synchrotron-based spectroscopies

    Get PDF
    We have investigated compositional changes on GaNsurfaces under Ar-ion bombardment using synchrotron-based high-resolution x-rayphotoemission (PES) and near-edge x-ray absorption fine structure(NEXAFS)spectroscopy. The low-energy ion bombardment of GaN produces a Ga-rich surface layer which transforms into a metallic Ga layer at higher bombarding energies. At the same time, the photoemissionspectra around N 1s core levels reveal the presence of both uncoordinated nitrogen and nitrogen interstitials, which we have analyzed in more details by x-rayabsorption measurements at N K edge. We have demonstrated that PES and NEXAFS provide a powerful combination for studying the compositional changes on GaNsurfaces. A mechanism for the relocation and loss of nitrogen during ion bombardment in agreement with some recent experimental and theoretical studies of defect formation in GaN has been proposed.P.N.K.D. is grateful for the financial support of the Australian Research Council

    New identities involving q-Euler polynomials of higher order

    Full text link
    In this paper we give new identities involving q-Euler polynomials of higher order.Comment: 11 page

    Event-Driven Optimal Feedback Control for Multi-Antenna Beamforming

    Full text link
    Transmit beamforming is a simple multi-antenna technique for increasing throughput and the transmission range of a wireless communication system. The required feedback of channel state information (CSI) can potentially result in excessive overhead especially for high mobility or many antennas. This work concerns efficient feedback for transmit beamforming and establishes a new approach of controlling feedback for maximizing net throughput, defined as throughput minus average feedback cost. The feedback controller using a stationary policy turns CSI feedback on/off according to the system state that comprises the channel state and transmit beamformer. Assuming channel isotropy and Markovity, the controller's state reduces to two scalars. This allows the optimal control policy to be efficiently computed using dynamic programming. Consider the perfect feedback channel free of error, where each feedback instant pays a fixed price. The corresponding optimal feedback control policy is proved to be of the threshold type. This result holds regardless of whether the controller's state space is discretized or continuous. Under the threshold-type policy, feedback is performed whenever a state variable indicating the accuracy of transmit CSI is below a threshold, which varies with channel power. The practical finite-rate feedback channel is also considered. The optimal policy for quantized feedback is proved to be also of the threshold type. The effect of CSI quantization is shown to be equivalent to an increment on the feedback price. Moreover, the increment is upper bounded by the expected logarithm of one minus the quantization error. Finally, simulation shows that feedback control increases net throughput of the conventional periodic feedback by up to 0.5 bit/s/Hz without requiring additional bandwidth or antennas.Comment: 29 pages; submitted for publicatio

    Phonon-mediated electron spin phase diffusion in a quantum dot

    Full text link
    An effective spin relaxation mechanism that leads to electron spin decoherence in a quantum dot is proposed. In contrast to the common calculations of spin-flip transitions between the Kramers doublets, we take into account a process of phonon-mediated fluctuation in the electron spin precession and subsequent spin phase diffusion. Specifically, we consider modulations in the longitudinal g-factor and hyperfine interaction induced by the phonon-assisted transitions between the lowest electronic states. Prominent differences in the temperature and magnetic field dependence between the proposed mechanisms and the spin-flip transitions are expected to facilitate its experimental verification. Numerical estimation demonstrates highly efficient spin relaxation in typical semiconductor quantum dots.Comment: 5 pages, 1 figur

    Gravitational Effects in Quantum Mechanics

    Full text link
    To date, both quantum theory, and Einstein's theory of general relativity have passed every experimental test in their respective regimes. Nevertheless, almost since their inception, there has been debate surrounding whether they should be unified and by now there exists strong theoretical arguments pointing to the necessity of quantising the gravitational field. In recent years, a number of experiments have been proposed which, if successful, should give insight into features at the Planck scale. Here we review some of the motivations, from the perspective of semi-classical arguments, to expect new physical effects at the overlap of quantum theory and general relativity. We conclude with a short introduction to some of the proposals being made to facilitate empirical verification.Comment: 24 pages, 3 figures, review article. Submitted to Contemporary Physic
    corecore