50 research outputs found

    Deletion of claudin-10 rescues claudin-16-deficient mice from hypomagnesemia and hypercalciuria

    Get PDF
    The tight junction proteins claudin-10 and -16 are crucial for the paracellular reabsorption of cations along the thick ascending limb of Henle's loop in the kidney. In patients, mutations in CLDN16 cause familial hypomagnesemia with hypercalciuria and nephrocalcinosis, while mutations in CLDN10 impair kidney function. Mice lacking claudin-16 display magnesium and calcium wasting, whereas absence of claudin-10 results in hypermagnesemia and interstitial nephrocalcinosis. In order to study the functional interdependence of claudin-10 and -16 we generated double-deficient mice. These mice had normal serum magnesium and urinary excretion of magnesium and calcium and showed polyuria and sodium retention at the expense of increased renal potassium excretion, but no nephrocalcinosis. Isolated thick ascending limb tubules of double mutants displayed a complete loss of paracellular cation selectivity and functionality. Mice lacking both claudin-10 and -16 in the thick ascending limb recruited downstream compensatory mechanisms and showed hypertrophic distal convoluted tubules with changes in gene expression and phosphorylation of ion transporters in this segment, presumably triggered by the mild decrease in serum potassium. Thus, severe individual phenotypes in claudin-10 and claudin-16 knockout mice are corrected by the additional deletion of the other claudin

    Annexin A2 mediates apical trafficking of renal Na(+)-K(+)-2Cl(-)-cotransporter

    Get PDF
    The furosemide-sensitive Na(+)-K(+)-2Cl(-)-cotransporter (NKCC2) is responsible for urine concentration, and helps maintain systemic salt homeostasis. Its activity depends on trafficking to, and insertion into, the apical membrane, as well as on phosphorylation of conserved N-terminal serine and threonine residues. Vasopressin (AVP), signaling via PKA and other kinases, activates NKCC2. Association of NKCC2 with lipid rafts facilitates its AVP-induced apical translocation and activation at the surface. Lipid raft microdomains typically serve as platforms for membrane proteins to facilitate their interactions with other proteins, but little is known about partners that interact with NKCC2. Yeast two-hybrid screening identified an interaction between NKCC2 and the cytosolic protein, annexin A2 (AnxA2). Annexins mediate lipid raft-dependent trafficking of transmembrane proteins, including the AVP-regulated water channel, aquaporin 2. Here, we demonstrate that AnxA2, which binds to phospholipids in a Ca(2+)-dependent manner and may organize microdomains, is co-distributed with NKCC2 to promote its apical translocation in response to AVP stimulation and low chloride hypotonic stress. NKCC2 and AnxA2 interact in a phosphorylation-dependent manner. Phosphomimetic AnxA2 carrying a mutant, Src-dependent phosphoacceptor (AnxA2-Y24D-GFP), enhanced surface expression and raft association of NKCC2 by 5-fold upon AVP stimulation, whereas PKC-dependent AnxA2-S26D-GFP did not. As the AnxA2 effect involved only non-phosphorylated NKCC2, it appears to affect NKCC2 trafficking. Overexpression or knockdown experiments further supported the role of AnxA2 in the apical translocation and surface expression of NKCC2. In summary, this study identifies AnxA2 as a lipid raft-associated trafficking factor for NKCC2 and provides mechanistic insight into the regulation of this essential cotransporter

    A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling

    Get PDF
    Abstract The lateral habenula (LHb) has a key role in integrating a variety of neural circuits associated with reward and aversive behaviors. There is limited information about how the different cell types and neuronal circuits within the LHb coordinate physiological and motivational states. Here, we report a cell type in the medial division of the LHb (LHbM) in male rats that is distinguished by: (1) a molecular signature for GABAergic neurotransmission (Slc32a1/VGAT) and estrogen receptor (Esr1/ERα) expression, at both mRNA and protein levels, as well as the mRNA for vesicular glutamate transporter Slc17a6/VGLUT2, which we term the GABAergic estrogen-receptive neuron (GERN); (2) its axonal projection patterns, identified by in vivo juxtacellular labeling, to both local LHb and to midbrain modulatory systems; and (3) its somatic expression of receptors for vasopressin, serotonin and dopamine, and mRNA for orexin receptor 2. This cell type is anatomically located to receive afferents from midbrain reward (dopamine and serotonin) and hypothalamic water and energy homeostasis (vasopressin and orexin) circuits. These afferents shared the expression of estrogen synthase (aromatase) and VGLUT2, both in their somata and axon terminals. We demonstrate dynamic changes in LHbM VGAT+ cell density, dependent upon gonadal functional status, that closely correlate with motivational behavior in response to predator and forced swim stressors. The findings suggest that the homeostasis and reward-related glutamatergic convergent projecting pathways to LHbMC employ a localized neurosteroid signaling mechanism via axonal expression of aromatase, to act as a switch for GERN excitation/inhibition output prevalence, influencing depressive or motivated behavior

    Vertical-external-cavity surface-emitting lasers and quantum dot lasers

    Full text link
    The use of cavity to manipulate photon emission of quantum dots (QDs) has been opening unprecedented opportunities for realizing quantum functional nanophotonic devices and also quantum information devices. In particular, in the field of semiconductor lasers, QDs were introduced as a superior alternative to quantum wells to suppress the temperature dependence of the threshold current in vertical-external-cavity surface-emitting lasers (VECSELs). In this work, a review of properties and development of semiconductor VECSEL devices and QD laser devices is given. Based on the features of VECSEL devices, the main emphasis is put on the recent development of technological approach on semiconductor QD VECSELs. Then, from the viewpoint of both single QD nanolaser and cavity quantum electrodynamics (QED), a single-QD-cavity system resulting from the strong coupling of QD cavity is presented. A difference of this review from the other existing works on semiconductor VECSEL devices is that we will cover both the fundamental aspects and technological approaches of QD VECSEL devices. And lastly, the presented review here has provided a deep insight into useful guideline for the development of QD VECSEL technology and future quantum functional nanophotonic devices and monolithic photonic integrated circuits (MPhICs).Comment: 21 pages, 4 figures. arXiv admin note: text overlap with arXiv:0904.369

    Aldosterone does not require angiotensin II to activate NCC through a WNK4–SPAK–dependent pathway

    Get PDF
    We and others have recently shown that angiotensin II can activate the sodium chloride cotransporter (NCC) through a WNK4–SPAK-dependent pathway. Because WNK4 was previously shown to be a negative regulator of NCC, it has been postulated that angiotensin II converts WNK4 to a positive regulator. Here, we ask whether aldosterone requires angiotensin II to activate NCC and if their effects are additive. To do so, we infused vehicle or aldosterone in adrenalectomized rats that also received the angiotensin receptor blocker losartan. In the presence of losartan, aldosterone was still capable of increasing total and phosphorylated NCC twofold to threefold. The kinases WNK4 and SPAK also increased with aldosterone and losartan. A dose-dependent relationship between aldosterone and NCC, SPAK, and WNK4 was identified, suggesting that these are aldosterone-sensitive proteins. As more functional evidence of increased NCC activity, we showed that rats receiving aldosterone and losartan had a significantly greater natriuretic response to hydrochlorothiazide than rats receiving losartan only. To study whether angiotensin II could have an additive effect, rats receiving aldosterone with losartan were compared with rats receiving aldosterone only. Rats receiving aldosterone only retained more sodium and had twofold to fourfold increase in phosphorylated NCC. Together, our results demonstrate that aldosterone does not require angiotensin II to activate NCC and that WNK4 appears to act as a positive regulator in this pathway. The additive effect of angiotensin II may favor electroneutral sodium reabsorption during hypovolemia and may contribute to hypertension in diseases with an activated renin–angiotensin–aldosterone system

    New aspects of Na,K,2Cl-cotransport-dependent renal volume regulation

    No full text

    Patients with hypokalemia develop WNK bodies in the distal convoluted tubule of the kidney

    No full text
    Hypokalemia contributes to the progression of chronic kidney disease, while a definitive pathophysiogical theory to explain this remains to be established. K(+) deficiency results in profound alterations of renal epithelial transport. These include an increase of salt reabsorption via the Na(+),Cl(-)-cotransporter (NCC) of the distal convoluted tubule (DCT), which minimizes electroneutral K(+) loss in downstream nephron segments. In experimental conditions of dietary K(+) depletion, punctate structures in the DCT containing crucial NCC-regulating kinases have been discovered in the murine DCT and termed "WNK bodies", referring to their component, with no lysine (WNK) kinases. We hypothesized that in humans, WNK bodies occur as well in hypokalemia. Renal needle biopsies of patients with chronic hypokalemic nephropathy and appropriate controls were examined by histological stains and immunofluorescence. Segment- and organelle-specific marker proteins were used to characterize the intrarenal and subcellular distribution of established WNK body constituents, namely WNK and Ste20-related proline-alanine-rich (SPAK) kinases. In both hypokalemic patients, WNKs and SPAK concentrated in non-membrane bound cytoplasmic regions in the DCT, consistent with prior descriptions of WNK bodies. The putative WNK bodies were located in the perinuclear region close to, but not within, the endoplasmic reticulum. They were closely adjacent to microtubules but not clustered in aggresomes. Notably, we provide the first report of WNK bodies, which are functionally challenging structures associated with K(+) deficiency, in human patients

    Demonstration of the functional impact of vasopressin signaling in the thick ascending limb by a targeted transgenic rat approach

    No full text
    The antidiuretic hormone vasopressin (AVP) regulates renal salt and water reabsorption along the distal nephron and collecting duct system. These effects are mediated by vasopressin 2 receptors (V2R) and release of intracellular Gs-mediated cAMP to activate epithelial transport proteins. Inactivating mutations in the V2R gene lead to the X-linked form of nephrogenic diabetes insipidus (NDI), which has chiefly been related with impaired aquaporin 2-mediated water reabsorption in the collecting ducts. Previous work also suggested the AVP-V2R-mediated activation of Na(+)-K(+)-2Cl(-)-cotransporters (NKCC2) along the thick ascending limb (TAL) in the context of urine concentration, but its individual contribution to NDI or, more generally, to overall renal function was unclear. We hypothesized that V2R-mediated effects in TAL essentially determine its reabsorptive function. To test this, we reevaluated V2R expression. Basolateral membranes of medullary and cortical TAL were clearly stained, whereas cells of the macula densa were unreactive. A dominant-negative, NDI-causing truncated V2R mutant (Ni3-Glu242stop) was then introduced into the rat genome under control of the Tamm-Horsfall protein promoter to cause a tissue-specific AVP-signaling defect exclusively in TAL. Resulting Ni3-V2R transgenic rats revealed decreased basolateral but increased intracellular V2R signal in TAL epithelia, suggesting impaired trafficking of the receptor. Rats displayed significant baseline polyuria, failure to concentrate the urine in response to water deprivation, and hypercalciuria. NKCC2 abundance, phosphorylation, and surface expression were markedly decreased. In summary, these data indicate that suppression of AVP-V2R signaling in TAL causes major impairment in renal fluid and electrolyte handling. Our results may have clinical implications

    P2X7 receptor stimulation is not required for oxalate crystal-induced kidney injury

    No full text
    Oxalate crystal-induced renal inflammation is associated with progressive kidney failure due to activation of the NLRP3/CASP-1 inflammasome. It has been suggested previously that purinergic P2X7 receptor signaling is critical for crystal-induced inflammasome activation and renal injury. Therefore, we investigated the role of the P2X7 receptor in response to crystal-induced cytokine release, inflammation, and kidney failure using in vitro and in vivo models. Dendritic cells and macrophages derived from murine bone marrow and human peripheral blood mononucleated cells stimulated with calcium-oxalate crystals, monosodium urate crystals, or ATP lead to the robust release of interleukin-1beta (IL-1ß). Treatment with the P2X7 inhibitor A740003 or the depletion of ATP by apyrase selectively abrogated ATP-induced, but not oxalate and urate crystal-induced IL-1ß release. In line with this finding, dendritic cells derived from bone marrow (BMDCs) from P2X7-/- mice released reduced amounts of IL-1ß following stimulation with ATP, while oxalate and urate crystal-induced IL-1ß release was unaffected. In sharp contrast, BMDCs from Casp1-/- mice exhibited reduced IL-1ß release following either of the three stimulants. In addition, P2X7-/- mice demonstrated similar degrees of crystal deposition, tubular damage and inflammation when compared with WT mice. In line with these findings, increases in plasma creatinine were no different between WT and P2X7-/- mice. In contrast to previous reports, our results indicate that P2X7 receptor is not required for crystal-induced CKD and it is unlikely to be a suitable therapeutic target for crystal-induced progressive kidney disease
    corecore