316 research outputs found
Neutrinoless Double Beta Decay and Lepton Flavor Violation
We point out that extensions of the Standard Model with low scale (~TeV)
lepton number violation (LNV) generally lead to a pattern of lepton flavor
violation (LFV) experimentally distinguishable from the one implied by models
with GUT scale LNV. As a consequence, muon LFV processes provide a powerful
diagnostic tool to determine whether or not the effective neutrino mass can be
deduced from the rate of neutrinoless double beta decay. We discuss the role of
\mu -> e \gamma and \mu -> e conversion in nuclei, which will be studied with
high sensitivity in forthcoming experiments.Comment: 4 pages, 3 figure
K* nucleon hyperon form factors and nucleon strangeness
A crucial input for recent meson hyperon cloud model estimates of the nucleon
matrix element of the strangeness current are the nucleon-hyperon-K* (NYK*)
form factors which regularize some of the arising loops. Prompted by new and
forthcoming information on these form factors from hyperon-nucleon potential
models, we analyze the dependence of the loop model results for the
strange-quark observables on the NYK* form factors and couplings. We find, in
particular, that the now generally favored soft N-Lambda-K* form factors can
reduce the magnitude of the K* contributions in such models by more than an
order of magnitude, compared to previous results with hard form factors. We
also discuss some general implications of our results for hadronic loop models.Comment: 9 pages, 8 figures, new co-author, discussion extended to the
momentum dependence of the strange vector form factor
Meson-Baryon-Baryon Vertex Function and the Ward-Takahashi Identity
Ohta proposed a solution for the well-known difficulty of satisfying the
Ward-Takahashi identity for a photo-meson-baryon-baryon amplitude (MBB)
when a dressed meson-baryon-baryon (MBB) vertex function is present. He
obtained a form for the MBB amplitude which contained, in addition to
the usual pole terms, longitudinal seagull terms which were determined entirely
by the MBB vertex function. He arrived at his result by using a Lagrangian
which yields the MBB vertex function at tree level. We show that such a
Lagrangian can be neither hermitian nor charge conjugation invariant. We have
been able to reproduce Ohta's result for the MBB amplitude using the
Ward-Takahashi identity and no other assumption, dynamical or otherwise, and
the most general form for the MBB and MBB vertices. However, contrary
to Ohta's finding, we find that the seagull terms are not robust. The seagull
terms extracted from the MBB vertex occur unchanged in tree graphs,
such as in an exchange current amplitude. But the seagull terms which appear in
a loop graph, as in the calculation of an electromagnetic form factor, are, in
general, different. The whole procedure says nothing about the transverse part
of the (MBB) vertex and its contributions to the amplitudes in
question.Comment: A 20 pages Latex file and 16 Postscript figures in an uuencoded
format. Use epsf.sty to include the figures into the Latex fil
Deuteron Electroweak Disintegration
We study the deuteron electrodisintegration with inclusion of the neutral
currents focusing on the helicity asymmetry of the exclusive cross section in
coplanar geometry. We stress that a measurement of this asymmetry in the quasi
elastic region is of interest for an experimental determination of the weak
form factors of the nucleon, allowing one to obtain the parity violating
electron neutron asymmetry. Numerically, we consider the reaction at low
momentum transfer and discuss the sensitivity of the helicity asymmetry to the
strangeness radius and magnetic moment. The problems coming from the finite
angular acceptance of the spectrometers are also considered.Comment: 30 pages, Latex, 7 eps figures, submitted to Phys.Rev.C e-mail:
[email protected] , [email protected]
The Weak Charge of the Proton and New Physics
We address the physics implications of a precision determination of the weak
charge of the proton, QWP, from a parity violating elastic electron proton
scattering experiment to be performed at the Jefferson Laboratory. We present
the Standard Model (SM) expression for QWP including one-loop radiative
corrections, and discuss in detail the theoretical uncertainties and missing
higher order QCD corrections. Owing to a fortuitous cancellation, the value of
QWP is suppressed in the SM, making it a unique place to look for physics
beyond the SM. Examples include extra neutral gauge bosons, supersymmetry, and
leptoquarks. We argue that a QWP measurement will provide an important
complement to both high energy collider experiments and other low energy
electroweak measurements. The anticipated experimental precision requires the
knowledge of the order alpha_s corrections to the pure electroweak box
contributions. We compute these contributions for QWP, as well as for the weak
charges of heavy elements as determined from atomic parity violation.Comment: 22 pages of LaTeX, 5 figure
Relativistic nuclear structure effects in quasielastic neutrino scattering
Charged-current cross sections are calculated for quasielastic neutrino and
antineutrino scattering using a relativistic meson-nucleon model. We examine
how nuclear-structure effects, such as relativistic random-phase-approximation
(RPA) corrections and momentum-dependent nucleon self-energies, influence the
extraction of the axial form factor of the nucleon. RPA corrections are
important only at low-momentum transfers. In contrast, the momentum dependence
of the relativistic self-energies changes appreciably the value of the
axial-mass parameter, , extracted from dipole fits to the axial form
factor. Using Brookhaven's experimental neutrino spectrum we estimate the
sensitivity of M to various relativistic nuclear-structure effects.Comment: 26 pages, revtex, 6 postscript figures (available upon request
Probing Nucleon Strangeness with Neutrinos: Nuclear Model Dependences
The extraction of the nucleon's strangeness axial charge, Delta_s, from
inclusive, quasielastic neutral current neutrino cross sections is studied
within the framework of the plane-wave impulse approximation. We find that the
value of Delta_s can depend significantly on the choice of nuclear model used
in analyzing the quasielastic cross section. This model-dependence may be
reduced by one order of magnitude when Delta_s is extracted from the ratio of
total proton to neutron yields. We apply this analysis to the interpretation of
low-energy neutrino cross sections and arrive at a nuclear theory uncertainty
of plus/minus 0.03 on the value of Delta_s expected to be determined from the
ratio of proton and neutron yields measured by the LSND collaboration. This
error compares favorably with estimates of the SU(3)-breaking uncertainty in
the value of Delta_s extracted from inclusive, polarized deep-inelastic
structure function measurements. We also point out several general features of
the quasielastic neutral current neutrino cross section and compare them with
the analogous features in inclusive, quasielastic electron scattering.Comment: 40 pages (including 11 postscript figures), uses REVTeX and
epsfig.st
Parity violating target asymmetry in electron - proton scattering
We analyze the parity-violating (PV) components of the analyzing power in
elastic electron-proton scattering and discuss their sensitivity to the strange
quark contributions to the proton weak form factors. We point out that the
component of the analyzing power along the momentum transfer is independent of
the electric weak form factor and thus compares favorably with the PV beam
asymmetry for a determination of the strangeness magnetic moment. We also show
that the transverse component could be used for constraining the strangeness
radius. Finally, we argue that a measurement of both components could give
experimental information on the strangeness axial charge.Comment: 24 pages, Latex, 5 eps figures, submitted to Phys.Rev.
The Vector Analyzing Power in Elastic Electron-Proton Scattering
We compute the vector analyzing power (VAP) for the elastic scattering of
transversely polarized electrons from protons at low energies using an
effective theory of electrons, protons, and photons. We study all contributions
through second order in , where and are the electron energy and
nucleon mass, respectively. The leading order VAP arises from the imaginary
part of the interference of one- and two-photon exchange amplitudes.
Sub-leading contributions are generated by the nucleon magnetic moment and
charge radius as well as recoil corrections to the leading-order amplitude.
Working to , we obtain a prediction for that is free of
unknown parameters and that agrees with the recent measurement of the VAP in
backward angle scattering.Comment: 24 pages, 11 figures. Typos fixe
Constraints on T-Odd, P-Even Interactions from Electric Dipole Moments
We construct the relationship between nonrenormalizable,effective,
time-reversal violating (TV) parity-conserving (PC) interactions of quarks and
gauge bosons and various low-energy TVPC and TV parity-violating (PV)
observables. Using effective field theory methods, we delineate the scenarious
under which experimental limits on permanent electric dipole moments (EDM's) of
the electron, neutron, and neutral atoms as well as limits on TVPC observables
provide the most stringent bounds on new TVPC interactions. Under scenarios in
which parity invariance is restored at short distances, the one-loop EDM of
elementary fermions generate the most severe constraints. The limits derived
from the atomic EDM of Hg are considerably weaker. When parity symmetry
remains broken at short distances, direct TVPC search limits provide the least
ambiguous bounds. The direct limits follow from TVPC interactions between two
quarks.Comment: 43 pages, 9 figure
- …
