83 research outputs found

    Investigations of the pi N total cross sections at high energies using new FESR: log nu or (log nu)^2

    Full text link
    We propose to use rich informations on pi p total cross sections below N= 10 GeV in addition to high-energy data in order to discriminate whether these cross sections increase like log nu or (log nu)^2 at high energies, since it is difficult to discriminate between asymptotic log nu and (log nu)^2 fits from high-energy data alone. A finite-energy sum rule (FESR) which is derived in the spirit of the P' sum rule as well as the n=1 moment FESR have been required to constrain the high-energy parameters. We then searched for the best fit of pi p total cross sections above 70 GeV in terms of high-energy parameters constrained by these two FESR. We can show from this analysis that the (log nu)^2 behaviours is preferred to the log nu behaviours.Comment: to be published in Phys. Rev. D 5 pages, 2 eps figure

    Catalysis and rotation of F-1 motor: Cleavage of ATP at the catalytic site occurs in 1 ms before 40 degrees substep rotation

    Get PDF
    F-1, a water-soluble portion of FoF1-ATP synthase, is an ATIP hydrolysis-driven rotary motor. The central gamma-subunit rotates in the alpha(3)beta(3) cylinder by repeating the following four stages of rotation: ATP-binding dwell, rapid 801 substep rotation, interim dwell, and rapid 40degrees substep rotation. At least two 1-ms catalytic events occur in the interim dwell, but it is still unclear which steps in the ATPase cycle, except for ATIP binding, correspond to these events. To discover which steps, we analyzed rotations of F-1 subcomplex (alpha(3)beta(3)gamma) from thermophilic Bacillus PS3 under conditions where cleavage of ATIP at the catalytic site is decelerated: hydrolysis of ATP by the catalytic-site mutant F, and hydrolysis of a slowly hydrolyzable substrate ATPgammaS (adenosine 5'-[gamma-thio]triphosphate) by wild-type F-1. In both cases, interim dwells were extended as expected from bulk phase kinetics, confirming that cleavage of ATP takes place during the interim dwell. Furthermore, the results of ATPgammaS hydrolysis by the mutant F-1 ensure that cleavage of ATIP most likely corresponds to one of the two 1-ms events and not some other faster undetected event. Thus, cleavage of ATP on F-1 occurs in 1 ms during the interim dwell, and we call this interim dwell catalytic dwell

    Information heat engine: converting information to energy by feedback control

    Full text link
    In 1929, Leo Szilard invented a feedback protocol in which a hypothetical intelligence called Maxwell's demon pumps heat from an isothermal environment and transduces it to work. After an intense controversy that lasted over eighty years; it was finally clarified that the demon's role does not contradict the second law of thermodynamics, implying that we can convert information to free energy in principle. Nevertheless, experimental demonstration of this information-to-energy conversion has been elusive. Here, we demonstrate that a nonequilibrium feedback manipulation of a Brownian particle based on information about its location achieves a Szilard-type information-energy conversion. Under real-time feedback control, the particle climbs up a spiral-stairs-like potential exerted by an electric field and obtains free energy larger than the amount of work performed on it. This enables us to verify the generalized Jarzynski equality, or a new fundamental principle of "information-heat engine" which converts information to energy by feedback control.Comment: manuscript including 7 pages and 4 figures and supplementary material including 6 pages and 8 figure

    Spectral Duality in Integrable Systems from AGT Conjecture

    Full text link
    We describe relationships between integrable systems with N degrees of freedom arising from the AGT conjecture. Namely, we prove the equivalence (spectral duality) between the N-cite Heisenberg spin chain and a reduced gl(N) Gaudin model both at classical and quantum level. The former one appears on the gauge theory side of the AGT relation in the Nekrasov-Shatashvili (and further the Seiberg-Witten) limit while the latter one is natural on the CFT side. At the classical level, the duality transformation relates the Seiberg-Witten differentials and spectral curves via a bispectral involution. The quantum duality extends this to the equivalence of the corresponding Baxter-Schrodinger equations (quantum spectral curves). This equivalence generalizes both the spectral self-duality between the 2x2 and NxN representations of the Toda chain and the famous AHH duality

    A 5d/3d duality from relativistic integrable system

    Full text link
    We propose and prove a new exact duality between the F-terms of supersymmetric gauge theories in five and three dimensions with adjoint matter fields. The theories are compactified on a circle and are subject to the Omega deformation. In the limit proposed by Nekrasov and Shatashvili, the supersymmetric vacua become isolated and are identified with the eigenstates of a quantum integrable system. The effective twisted superpotentials are the Yang-Yang functional of the relativistic elliptic Calogero-Moser model. We show that they match on-shell by deriving the Bethe ansatz equation from the saddle point of the five-dimensional partition function. We also show that the Chern-Simons terms match and extend our proposal to the elliptic quiver generalizations.Comment: 30 pages, 4 figures. v2: typo corrected, references adde

    Direct Observation of the Myosin Va Recovery Stroke That Contributes to Unidirectional Stepping along Actin

    Get PDF
    Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed “strokes”; the “power stroke” is the force-generating swinging of the myosin light chain–binding “neck” domain relative to the motor domain “head” while bound to actin; the “recovery stroke” is the necessary initial motion that primes, or “cocks,” myosin while detached from actin. Myosin Va is a processive dimer that steps unidirectionally along actin following a “hand over hand” mechanism in which the trailing head detaches and steps forward ∼72 nm. Despite large rotational Brownian motion of the detached head about a free joint adjoining the two necks, unidirectional stepping is achieved, in part by the power stroke of the attached head that moves the joint forward. However, the power stroke alone cannot fully account for preferential forward site binding since the orientation and angle stability of the detached head, which is determined by the properties of the recovery stroke, dictate actin binding site accessibility. Here, we directly observe the recovery stroke dynamics and fluctuations of myosin Va using a novel, transient caged ATP-controlling system that maintains constant ATP levels through stepwise UV-pulse sequences of varying intensity. We immobilized the neck of monomeric myosin Va on a surface and observed real time motions of bead(s) attached site-specifically to the head. ATP induces a transient swing of the neck to the post-recovery stroke conformation, where it remains for ∼40 s, until ATP hydrolysis products are released. Angle distributions indicate that the post-recovery stroke conformation is stabilized by ≥5 kBT of energy. The high kinetic and energetic stability of the post-recovery stroke conformation favors preferential binding of the detached head to a forward site 72 nm away. Thus, the recovery stroke contributes to unidirectional stepping of myosin Va

    Mechanical power in pediatric acute respiratory distress syndrome:a PARDIE study

    Get PDF
    BACKGROUND: Mechanical power is a composite variable for energy transmitted to the respiratory system over time that may better capture risk for ventilator-induced lung injury than individual ventilator management components. We sought to evaluate if mechanical ventilation management with a high mechanical power is associated with fewer ventilator-free days (VFD) in children with pediatric acute respiratory distress syndrome (PARDS). METHODS: Retrospective analysis of a prospective observational international cohort study. RESULTS: There were 306 children from 55 pediatric intensive care units included. High mechanical power was associated with younger age, higher oxygenation index, a comorbid condition of bronchopulmonary dysplasia, higher tidal volume, higher delta pressure (peak inspiratory pressure—positive end-expiratory pressure), and higher respiratory rate. Higher mechanical power was associated with fewer 28-day VFD after controlling for confounding variables (per 0.1 J·min(−1)·Kg(−1) Subdistribution Hazard Ratio (SHR) 0.93 (0.87, 0.98), p = 0.013). Higher mechanical power was not associated with higher intensive care unit mortality in multivariable analysis in the entire cohort (per 0.1 J·min(−1)·Kg(−1) OR 1.12 [0.94, 1.32], p = 0.20). But was associated with higher mortality when excluding children who died due to neurologic reasons (per 0.1 J·min(−1)·Kg(−1) OR 1.22 [1.01, 1.46], p = 0.036). In subgroup analyses by age, the association between higher mechanical power and fewer 28-day VFD remained only in children < 2-years-old (per 0.1 J·min(−1)·Kg(−1) SHR 0.89 (0.82, 0.96), p = 0.005). Younger children were managed with lower tidal volume, higher delta pressure, higher respiratory rate, lower positive end-expiratory pressure, and higher PCO(2) than older children. No individual ventilator management component mediated the effect of mechanical power on 28-day VFD. CONCLUSIONS: Higher mechanical power is associated with fewer 28-day VFDs in children with PARDS. This association is strongest in children < 2-years-old in whom there are notable differences in mechanical ventilation management. While further validation is needed, these data highlight that ventilator management is associated with outcome in children with PARDS, and there may be subgroups of children with higher potential benefit from strategies to improve lung-protective ventilation. Take Home Message: Higher mechanical power is associated with fewer 28-day ventilator-free days in children with pediatric acute respiratory distress syndrome. This association is strongest in children <2-years-old in whom there are notable differences in mechanical ventilation management. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-021-03853-6
    corecore