81 research outputs found

    Influence of tin doped TiO2 nanorods on dye sensitized solar cells

    Get PDF
    The one-step hydrothermal method was used to synthesize Sn-doped TiO2 (Sn-TiO2) thin films, in which the variation in Sn content ranged from 0 to 7-wt % and, further, its influence on the performance of a dye-sensitized solar cell (DSSC) photoanode was studied. The deposited samples were analyzed by X-ray diffraction (XRD) and Raman spectroscopy, which confirmed the existence of the rutile phase of the synthesized samples with crystallite size ranges in between 20.1 to 22.3 nm. In addition, the bare and Sn-TiO2 thin films showed nanorod morphology. A reduction in the optical band gap from 2.78 to 2.62 eV was observed with increasing Sn content. The X-ray photoelectron spectroscopy (XPS) analysis confirmed Sn4+ was successfully replaced at the Ti4+ site. The 3-wt % Sn-TiO2 based DSSC showed the optimum efficiency of 4.01%, which was superior to 0.87% of bare and other doping concentrations of Sn-TiO2 based DSSCs. The present work reflects Sn-TiO2 as an advancing material with excellent capabilities, which can be used in photovoltaic energy conversion devices

    Ultrasonic intensification as a tool for enhanced microbial biofuel yields

    Get PDF
    peer-reviewedUltrasonication has recently received attention as a novel bioprocessing tool for process intensification in many areas of downstream processing. Ultrasonic intensification (periodic ultrasonic treatment during the fermentation process) can result in a more effective homogenization of biomass and faster energy and mass transfer to biomass over short time periods which can result in enhanced microbial growth. Ultrasonic intensification can allow the rapid selective extraction of specific biomass components and can enhance product yields which can be of economic benefit. This review focuses on the role of ultrasonication in the extraction and yield enhancement of compounds from various microbial sources, specifically algal and cyanobacterial biomass with a focus on the production of biofuels. The operating principles associated with the process of ultrasonication and the influence of various operating conditions including ultrasonic frequency, power intensity, ultrasonic duration, reactor designs and kinetics applied for ultrasonic intensification are also described

    A Randomized Trial of Autologous Chondrocyte Implantation Versus Alternative Forms of Surgical Cartilage Management in Patients With a Failed Primary Treatment for Chondral or Osteochondral Defects in the Knee.

    Get PDF
    BACKGROUND: There are limited randomized controlled trials with long-term outcomes comparing autologous chondrocyte implantation (ACI) versus alternative forms of surgical cartilage management within the knee. PURPOSE: To determine at 5 years after surgery whether ACI was superior to alternative forms of cartilage management in patients after a failed previous treatment for chondral or osteochondral defects in the knee. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: In total, 390 participants were randomly assigned to receive either ACI or alternative management. Patients aged 18 to 55 years with one or two symptomatic cartilage defects who had failed 1 previous therapeutic surgical procedure in excess of 6 months prior were included. Dual primary outcome measures were used: (1) patient-completed Lysholm knee score and (2) time from surgery to cessation of treatment benefit. Secondary outcome measures included International Knee Documentation Committee and Cincinnati Knee Rating System scores, as well as number of serious adverse events. Analysis was performed on an intention-to-treat basis. RESULTS: Lysholm scores were improved by 1 year in both groups (15.4 points [95% CI, 11.9 to 18.8] and 15.2 points [95% CI, 11.6 to 18.9]) for ACI and alternative, with this improvement sustained over the duration of the trial. However, no evidence of a difference was found between the groups at 5 years (2.9 points; 95% CI, -1.8 to 7.5; P = .46). Approximately half of the participants (55%; 95% CI, 47% to 64% with ACI) were still experiencing benefit at 5 years, with time to cessation of treatment benefit similar in both groups (hazard ratio, 0.97; 95% CI, 0.72 to 1.32; P > .99). There was a differential effect on Lysholm scores in patients without previous marrow stimulation compared with those with marrow stimulation (P = .03; 6.4 points in favor of ACI; 95% CI, -0.4 to 13.1). More participants experienced a serious adverse event with ACI (P = .02). CONCLUSION: Over 5 years, there was no evidence of a difference in Lysholm scores between ACI and alternative management in patients who had previously failed treatment. Previous marrow stimulation had a detrimental effect on the outcome of ACI. REGISTRATION: International Standard Randomised Controlled Trial Number: 48911177

    Plaies par tondeuse � gazon chez l?enfant

    No full text

    Gas Sensing of Fluorine Doped Tin Oxide Thin Films Prepared by Spray Pyrolysis

    No full text
    Fluorine doped tin oxide (F: SnO2) films have been prepared onto the amorphous glass substrates by a spray pyrolysis. XRD studies reveal that the material deposited is polycrystalline SnO2 and have tetragonal structure. It is observed that films are highly orientated along (200) direction. The direct optical band gap energy for the F: SnO2 films are found to be 4.15 eV. Gas sensing properties of the sensor were checked against combustible gases like H2, CO2 CO, C3H8, CH4.The H2 sensitivity of the F-doped SnO2 sensor was found to be increased. The increase in the sensitivity is discussed in terms of increased resistivity and reduced permeation of gaseous oxygen into the underlying sensing layer due to the surface modification of the sensor
    corecore