180 research outputs found

    Unitarity of supersymmetric SL(2,R)/U(1) and no-ghost theorem for fermionic strings in AdS(3) x N

    Get PDF
    The unitarity of the NS supersymmetric coset SL(2,R)/U(1) is studied for the discrete representations. The results are applied to the proof of the no-ghost theorem for fermionic strings in AdS(3) x N in the NS sector. A no-ghost theorem is proved for states in flowed discrete representations.Comment: LaTeX in JHEP style, 16 pages, typos correcte

    Gauging the Wess-Zumino term of a sigma model with boundary

    Full text link
    We investigate the gauging of the Wess-Zumino term of a sigma model with boundary. We derive a set of obstructions to gauging and we interpret them as the conditions for the Wess-Zumino term to extend to a closed form in a suitable equivariant relative de Rham complex. We illustrate this with the two-dimensional sigma model and we show that the new obstructions due to the boundary can be interpreted in terms of Courant algebroids. We specialise to the case of the Wess-Zumino-Witten model, where it is proved that there always exist suitable boundary conditions which allow gauging any subgroup which can be gauged in the absence of a boundary. We illustrate this with two natural classes of gaugings: (twisted) diagonal subgroups with boundary conditions given by (twisted) conjugacy classes, and chiral isotropic subgroups with boundary conditions given by cosets.Comment: 18 pages (minor changes in response to referee report

    Neural Network Predictions of Atomic Form Factors and Incoherent Scattering Functions

    Get PDF
    In order to predict atomic form factors and incoherent scattering functions which are used to calculate the coherent and incoherent total scattering cross sections, a technique based on artificial neural networks of the multilayer type was implemented. In this context, two neural models have been developed and compared with those in the literature. This study revealed both the accuracy of the results obtained and the effectiveness of the designed model. The mean relative error for the least estimated property does not exceed 16.5 %. The software realized in this way give a prediction of the above parameters for the input variables Z: Atomic number, x: sin(ϑ/2)/λ and E: Photon energy, and it provides users with flexibility for prediction. The advantages of this technique lie in its very fast handling, due to its ease of use, and in the two integrated networks, which it guarantees for a variety of input parameters such as atomic number, photon energy, and momentum transfer variable

    Presentations of major peripheral arterial disease and risk of major outcomes in patients with type 2 diabetes: results from the ADVANCE-ON study.

    Get PDF
    BACKGROUND: Peripheral arterial disease (PAD) is known to be associated with high cardiovascular risk, but the individual impact of PAD presentations on risk of macrovascular and microvascular events has not been reliably compared in patients with type 2 diabetes. We aimed to evaluate the impact of major PAD, and its different presentations, on the 10-year risk of death, major macrovascular events, and major clinical microvascular events in these patients. METHODS: Participants in the action in diabetes and vascular disease: PreterAx and DiamicroN modified-release controlled evaluation (ADVANCE) trial and the ADVANCE-ON post-trial study were followed for a median of 5.0 (in-trial), 5.4 (post-trial), and 9.9 (overall) years. Major PAD at baseline was subdivided into lower-extremity chronic ulceration or amputation secondary to vascular disease and history of peripheral revascularization by angioplasty or surgery. RESULTS: Among 11,140 participants, 516 (4.6 %) had major PAD at baseline: 300 (2.7 %) had lower-extremity ulceration or amputation alone, 190 (1.7 %) had peripheral revascularization alone, and 26 (0.2 %) had both presentations. All-cause mortality, major macrovascular events, and major clinical microvascular events occurred in 2265 (20.3 %), 2166 (19.4 %), and 807 (7.2 %) participants, respectively. Compared to those without PAD, patients with major PAD had increased rates of all-cause mortality (HR 1.35, 95 % CI 1.15-1.60, p = 0.0004), and major macrovascular events (1.47 [1.23-1.75], p < 0.0001), after multiple adjustments for region of origin, cardiovascular risk factors and treatments, peripheral neuropathy markers, and randomized treatments. We have also observed a trend toward an association of baseline PAD with risk of major clinical microvascular events [1.31 (0.96-1.78), p = 0.09]. These associations were comparable for patients with a lower-extremity ulceration or amputation and for those with a history of peripheral revascularization. Furthermore, the risk of retinal photocoagulation or blindness, but not renal events, increased in patients with lower-extremity ulceration or amputation [1.53 (1.01-2.30), p = 0.04]. CONCLUSIONS: Lower-extremity ulceration or amputation, and peripheral revascularization both increased the risks of death and cardiovascular events, but only lower-extremity ulceration or amputation increased the risk of severe retinopathy in patients with type 2 diabetes. Screening for major PAD and its management remain crucial for cardiovascular prevention in patients with type 2 diabetes (ClinicalTrials.gov number, NCT00949286)

    On the Representation Theory of Orthofermions and Orthosupersymmetric Realization of Parasupersymmetry and Fractional Supersymmetry

    Full text link
    We construct a canonical irreducible representation for the orthofermion algebra of arbitrary order, and show that every representation decomposes into irreducible representations that are isomorphic to either the canonical representation or the trivial representation. We use these results to show that every orthosupersymmetric system of order pp has a parasupersymmetry of order pp and a fractional supersymmetry of order p+1p+1.Comment: 13 pages, to appear in J. Phys. A: Math. Ge

    Brief comments on Jackiw-Teitelboim gravity coupled to Liouville theory

    Full text link
    Jackiw-Teitelboim gravity with non-vanishing cosmological constant coupled to Liouville theory is considered as a non-critical string on dd dimensional flat spacetime. It is discussed how the presence of cosmological constant yields additional constraints on the parameter space of the theory, even when the conformal anomaly is independent of the cosmological constant. Such constraints agree with the necessary conditions for the tachyon field to be a primary --prelogarithmic-- operator of the worldsheet conformal field theory. Thus, the linearized tachyon field equation allows to impose the diagonal condition for the interaction term. We analyze the neutralization of the Liouville mode induced by the coupling to the Jackiw-Teitelboim Lagrangian. The free field prescription leads to obtain explicit expressions for three-point correlation functions for the case of vanishing cosmological constant in terms of a product of Shapiro-Virasoro integrals. This is a consequence of the mentioned neutralization effect.Comment: 14 pages, no figures. v2 References added. To be published in Classical and Quantum Gravity. v3 typos correcte

    The Partition Function of the Two-Dimensional Black Hole Conformal Field Theory

    Get PDF
    We compute the partition function of the conformal field theory on the two-dimensional euclidean black hole background using path-integral techniques. We show that the resulting spectrum is consistent with the algebraic expectations for the SL(2,R)/U(1) coset conformal field theory construction. In particular, we find confirmation for the bound on the spin of the discrete representations and we determine the density of the continuous representations. We point out the relevance of the partition function to all string theory backgrounds that include an SL(2,R)/U(1) coset factor.Comment: 17 pages, references added and typos correcte

    N=2 structures on solvable Lie algebras: the c=9 classification

    Full text link
    Let G be a finite-dimensional Lie algebra (not necessarily semisimple). It is known that if G is self-dual (that is, if it possesses an invariant metric) then there is a canonical N=1 superconformal algebra associated to its N=1 affinization---that is, it admits an N=1 (affine) Sugawara construction. Under certain additional hypotheses, this N=1 structure admits an N=2 extension. If this is the case, G is said to possess an N=2 structure. It is also known that an N=2 structure on a self-dual Lie algebra G is equivalent to a vector space decomposition G = G_+ \oplus G_- where G_\pm are isotropic Lie subalgebras. In other words, N=2 structures on G are in one-to-one correspondence with Manin triples (G,G_+,G_-). In this paper we exploit this correspondence to obtain a classification of the c=9 N=2 structures on self-dual solvable Lie algebras. In the process we also give some simple proofs for a variety of Lie algebraic results concerning self-dual Lie algebras admitting symplectic or K\"ahler structures.Comment: 49 pages in 2 columns (=25 physical pages), (uufiles-gz-9)'d .dvi file (uses AMSFonts 2.1+). Revision: Added 1 reference, corrected typos, added some more materia

    The BRST quantization and the no-ghost theorem for AdS_3

    Full text link
    In our previous papers, we prove the no-ghost theorem without light-cone directions (hep-th/0005002, hep-th/0303051). We point out that our results are valid for more general backgrounds. In particular, we prove the no-ghost theorem for AdS_3 in the context of the BRST quantization (with the standard restriction on the spin). We compare our BRST proof with the OCQ proof and establish the BRST-OCQ equivalence for AdS_3. The key in both approaches lies in the certain structure of the matter Hilbert space as a product of two Verma modules. We also present the no-ghost theorem in the most general form.Comment: 22 pages, JHEP and AMS-LaTeX; v2 & 3: minor improvement

    Strings in AdS_3 and the SL(2,R) WZW Model. Part 2: Euclidean Black Hole

    Full text link
    We consider the one-loop partition function for Euclidean BTZ black hole backgrounds or equivalently thermal AdS_3 backgrounds which are quotients of H_3 (Euclidean AdS_3). The one-loop partition function is modular invariant and we can read off the spectrum which is consistent to that found in hep-th/0001053. We see long strings and discrete states in agreement with the expectations.Comment: 23 pages, 3 figure
    • …
    corecore