101 research outputs found

    Experimentally induced root mortality increased nitrous oxide emission from tropical forest soils

    Get PDF
    We conducted an experiment on sand and clay tropical forest soils to test the short‐term effect of root mortality on the soil‐atmosphere flux of nitrous oxide, nitric oxide, methane, and carbon dioxide. We induced root mortality by isolating blocks of land to 1 m using trenching and root exclusion screening. Gas fluxes were measured weekly for ten weeks following the trenching treatment. For nitrous oxide there was a highly significant increase in soil‐atmosphere flux over the ten weeks following treatment for trenched plots compared to control plots. N2O flux averaged 37.5 and 18.5 ng N cm−2 h−1 from clay trenched and control plots and 4.7 and 1.5 ng N cm−2 h−1 from sand trenched and control plots. In contrast, there was no effect for soil‐atmosphere flux of nitric oxide, carbon dioxide, or methane

    Fine root dynamics and trace gas fluxes in two lowland tropical forest soils

    Get PDF
    Fine root dynamics have the potential to contribute significantly to ecosystem-scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 ( 35) and 153 ( 27) gm 2 yr 1 for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k5 0.96 year 1) than in the sandy loam soil (k5 0.61 year 1),leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N2O) emissions were significantly greater in the clay soil (13 1ngNcm 2 h 1) than in the sandy loam (1.4 0.2 ngNcm 2 h 1). Root mortality and decay following trenching doubled rates of N2O emissions in the clay and tripled them in sandy loam over a 1-year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 gCm 2 yr 1, accounting for 24% to 35% of the total soil CO2 efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521 206 gCm2 yr 1) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land-use change can contribute significantly to increased rates of nitrogen trace gas emissions

    GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth

    No full text
    International audienceWe introduce GaN/InGaN light emitting diodes with a dielectric photonic crystal embedded in the epitaxial layer by lateral epitaxial overgrowth on a patterned GaN template. Overgrowth, coalescence, and epitaxial growth of the pn junction within a thickness of 500 nm is obtained using metal-organic chemical vapor deposition. This design strongly modifies the distribution of guided modes, as confirmed by angle-resolved measurements. The regime of operation and potential efficiency of such structures are discussed

    Phosphor-Free Apple-White LEDs with Embedded Indium-Rich Nanostructures Grown on Strain Relaxed Nano-epitaxy GaN

    Get PDF
    Phosphor-free apple-white light emitting diodes have been fabricated using a dual stacked InGaN/GaN multiple quantum wells comprising of a lower set of long wavelength emitting indium-rich nanostructures incorporated in multiple quantum wells with an upper set of cyan-green emitting multiple quantum wells. The light-emitting diodes were grown on nano-epitaxially lateral overgrown GaN template formed by regrowth of GaN over SiO2 film patterned with an anodic aluminum oxide mask with holes of 125 nm diameter and a period of 250 nm. The growth of InGaN/GaN multiple quantum wells on these stress relaxed low defect density templates improves the internal quantum efficiency by 15% for the cyan-green multiple quantum wells. Higher emission intensity with redshift in the PL peak emission wavelength is obtained for the indium-rich nanostructures incorporated in multiple quantum wells. The quantum wells grown on the nano-epitaxially lateral overgrown GaN has a weaker piezoelectric field and hence shows a minimal peak shift with application of higher injection current. An enhancement of external quantum efficiency is achieved for the apple-white light emitting diodes grown on the nano-epitaxially lateral overgrown GaN template based on the light -output power measurement. The improvement in light extraction efficiency, ηextraction, was found to be 34% for the cyan-green emission peak and 15% from the broad long wavelength emission with optimized lattice period

    The variable influence of dispersant on degradation of oil hydrocarbons in subarctic deep-sea sediments at low temperatures (0-5 °C)

    Get PDF
    The microbial degradation of petroleum hydrocarbons at low temperatures was investigated in subarctic deep-sea sediments in th e Faroe Shetland Channel (FSC). The effect of the marine oil dispersant, Superdispersant 25 on hydrocarbon degradation was also examined. Sediments collected at 500 and 1000 m depth were spiked with a model oil containing 20 hydrocarbons and incubated at ambient temperature (5 and 0 °C, respectively) with and without marine dispersant. Treatment of sediments with hydrocarbons resulted in the enrichment of Gammaproteobacteria, and specifically the genera Pseudoalteromonas, Pseudomonas, Halomonas, and Cobetia. Hydrocarbon degradation was faster at 5 °C (500 m) with 65-89% of each component degraded after 50 days compared to 0-47% degradation at 0 °C (1000 m), where the aromatic hydrocarbons fluoranthene, anthracene, and Dibenzothiophene showed no degradation. Dispersant significantly increased the rate of degradation at 1000 m, but had no effect at 500 m. There was no statistically significant effect of Superdispersant 25 on the bacterial community structure at either station. These results show that the indigenous bacterial community in the FSC has the capacity to mitigate some of the effects of a potential oil spill, however, the effect of dispersant is ambiguous and further research is needed to understand the implications of its use
    corecore