66 research outputs found

    Management Recommendations for Soybean Aphid (Hemiptera: Aphididae) in the United States

    Get PDF
    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is the primary pest of soybean, Glycine max L., in the north central region. After more than a decade of research and extension efforts to manage this pest, several consensus management recommendations have been developed for sustainable and profitable soybean production. A summary of integrated pest management (IPM) tactics for soybean aphid are discussed, including cultural, genetic, economic, and chemical controls. To date, sampling and timely foliar insecticides are routinely recommended to protect yield and delay genetic resistance to insecticides. Host plant resistance is a new tool that can regulate populations and reduce the reliance of insecticides to control soybean aphid. A combination of these management tools also will reduce overall production costs and minimize negative environmental effects such as human exposure, and mortality of beneficial insects and other animals

    Effect of Temperature on Plant Resistance to Arthropod Pests

    Get PDF
    Temperature has a strong influence on the development, survival, and fecundity of herbivorous arthropods, and it plays a key role in regulating the growth and development of their host plants. In addition, temperature affects the production of plant secondary chemicals as well as structural characteristics used for defense against herbivores. Thus, temperature has potentially important implications for host plant resistance. Because temperature directly impacts arthropod pests, both positively and negatively, distinguishing direct effects from indirect effects mediated through host plants poses a challenge for researchers and practitioners. A more comprehensive understanding of how temperature affects plant resistance specifically, and arthropod pests in general, would lead to better predictions of pest populations, and more effective use of plant resistance as a management tactic. Therefore, the goals of this paper are to 1) review and update knowledge about temperature effects on plant resistance, 2) evaluate alternative experimental approaches for separating direct from plant-mediated indirect effects of temperature on pests, including benefits and limitations of each approach, and 3) offer recommendations for future research

    Sequential sampling for panicle caterpillars (Lepidoptera: Noctuidae) in sorghum

    Get PDF
    Citation: Elliott, N. C., M. J. Brewer, K. L. Giles, G. F. Backoulou, B. P. McCornack, B. B. Pendleton, and T. A. Royer. 2014. “Sequential Sampling for Panicle Caterpillars (Lepidoptera: Noctuidae) in Sorghum.” Journal of Economic Entomology 107 (2): 846–53. https://doi.org/10.1603/EC13413.Panicle caterpillars comprise an economically important insect pest complex of sorghum throughout the Great Plains of the United States, particularly in Kansas, Oklahoma, and Texas. The sorghum panicle caterpillar complex consists of larvae of two polyphagous lepidopteran species: the corn earworm, Helicoverpa zea (Boddie), and fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Sampling for panicle caterpillars in sorghum fields is usually accomplished by the beat bucket sampling technique with a fixed sample size of 30 beat bucket samples of one sorghum panicle each per 16.2 ha of field. We used Wald's sequential probability ratio test for a negative binomial distribution to develop a sequential sampling plan for panicle caterpillars. In total, 115 sorghum fields were sampled in Kansas, Oklahoma, and Texas from June to August 2010. Panicle caterpillars had an aggregated distribution of counts confirmed by Pearson's chi-square statistic for lack of fit to the negative binomial distribution for each sampled field. A sequential sampling plan was developed using a high threshold (an economic threshold) of 0.5 caterpillars per sorghum panicle, a low threshold (a safe level) of 0.20 caterpillars per panicle, and fixed error rates (α = 0.10 and β = 0.05). At caterpillar densities >0.45 and <0.12 per panicle, the average number of panicles inspected to make a decision was less than the current recommendation of 30. In a 2013 validation test of 25 fields, the expected number of samples taken from average sample number curve was in close agreement with the number of samples required using the sequential plan (r 2 = 0.93), and all fields were correctly classified when compared with a fixed sample size result. The plan improved upon current sampling recommendations for panicle caterpillars in sorghum because at known acceptable fixed error rates fewer samples were required when caterpillars are scarce or abundant, whereas more samples were required to make decisions with the same acceptable error rates when densities were near the economic thresholds

    Spatial Distribution of Aphis glycines (Hemiptera: Aphididae): A Summary of the Suction Trap Network

    Get PDF
    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an economically important pest of soybean, Glycine max (L.) Merrill, in the United States. Phenological information ofA. glycines is limited; specifically, little is known about factors guiding migrating aphids and potential impacts of long distance flights on local population dynamics. Increasing our understanding of A. glycines population dynamics may improve predictions of A. glycines outbreaks and improve management efforts. In 2005 a suction trap network was established in seven Midwest states to monitor the occurrence of alates. By 2006, this network expanded to 10 states and consisted of 42 traps. The goal of the STN was to monitor movement of A. glycines from their overwintering hostRhamnus spp. to soybean in spring, movement among soybean fields during summer, and emigration from soybean to Rhamnus in fall. The objective of this study was to infer movement patterns ofA. glycines on a regional scale based on trap captures, and determine the suitability of certain statistical methods for future analyses. Overall, alates were not commonly collected in suction traps until June. The most alates were collected during a 3-wk period in the summer (late July to mid-August), followed by the fall, with a peak capture period during the last 2 wk of September. Alate captures were positively correlated with latitude, a pattern consistent with the distribution of Rhamnus in the United States, suggesting that more southern regions are infested by immigrants from the north

    Selective and Irreversible Inhibitors of Aphid Acetylcholinesterases: Steps Toward Human-Safe Insecticides

    Get PDF
    Aphids, among the most destructive insects to world agriculture, are mainly controlled by organophosphate insecticides that disable the catalytic serine residue of acetylcholinesterase (AChE). Because these agents also affect vertebrate AChEs, they are toxic to non-target species including humans and birds. We previously reported that a cysteine residue (Cys), found at the AChE active site in aphids and other insects but not mammals, might serve as a target for insect-selective pesticides. However, aphids have two different AChEs (termed AP and AO), and only AP-AChE carries the unique Cys. The absence of the active-site Cys in AO-AChE might raise concerns about the utility of targeting that residue. Herein we report the development of a methanethiosulfonate-containing small molecule that, at 6.0 µM, irreversibly inhibits 99% of all AChE activity extracted from the greenbug aphid (Schizaphis graminum) without any measurable inhibition of the human AChE. Reactivation studies using β-mercaptoethanol confirm that the irreversible inhibition resulted from the conjugation of the inhibitor to the unique Cys. These results suggest that AO-AChE does not contribute significantly to the overall AChE activity in aphids, thus offering new insight into the relative functional importance of the two insect AChEs. More importantly, by demonstrating that the Cys-targeting inhibitor can abolish AChE activity in aphids, we can conclude that the unique Cys may be a viable target for species-selective agents to control aphids without causing human toxicity and resistance problems

    Combining Next-Generation Sequencing Strategies for Rapid Molecular Resource Development from an Invasive Aphid Species, Aphis glycines

    Get PDF
    Aphids are one of the most important insect taxa in terms of ecology, evolutionary biology, genetics and genomics, and interactions with endosymbionts. Additionally, many aphids are serious pest species of agricultural and horticultural plants. Recent genetic and genomic research has expanded molecular resources for many aphid species, including the whole genome sequencing of the pea aphid, Acrythosiphon pisum. However, the invasive soybean aphid, Aphis glycines, lacks in any significant molecular resources.Two next-generation sequencing technologies (Roche-454 and Illumina GA-II) were used in a combined approach to develop both transcriptomic and genomic resources, including expressed genes and molecular markers. Over 278 million bp were sequenced among the two methods, resulting in 19,293 transcripts and 56,688 genomic sequences. From this data set, 635 SNPs and 1,382 microsatellite markers were identified. For each sequencing method, different soybean aphid biotypes were used which revealed potential biotype specific markers. In addition, we uncovered 39,822 bp of sequence that were related to the obligatory endosymbiont, Buchnera aphidicola, as well as sequences that suggest the presence of Hamiltonella defensa, a facultative endosymbiont.Molecular resources for an invasive, non-model aphid species were generated. Additionally, the power of next-generation sequencing to uncover endosymbionts was demonstrated. The resources presented here will complement ongoing molecular studies within the Aphididae, including the pea aphid whole genome, lead to better understanding of aphid adaptation and evolution, and help provide novel targets for soybean aphid control

    Management Recommendations for Soybean Aphid (Hemiptera: Aphididae) in the United States

    Get PDF
    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is the primary pest of soybean, Glycine max L., in the north central region. After more than a decade of research and extension efforts to manage this pest, several consensus management recommendations have been developed for sustainable and profitable soybean production. A summary of integrated pest management (IPM) tactics for soybean aphid are discussed, including cultural, genetic, economic, and chemical controls. To date, sampling and timely foliar insecticides are routinely recommended to protect yield and delay genetic resistance to insecticides. Host plant resistance is a new tool that can regulate populations and reduce the reliance of insecticides to control soybean aphid. A combination of these management tools also will reduce overall production costs and minimize negative environmental effects such as human exposure, and mortality of beneficial insects and other animals.This article is from Journal of Integrated Pest Management 3 (2012): E1–E10, doi:10.1603/IPM11019. Posted with permission.</p
    • …
    corecore