57 research outputs found
Transcriptional activity of the 5′-flanking region of the thyroid transcription factor-1 gene in human thyroid cell lines
Thyroid transcription factor-1 (TTF-1, NKX2-1) is a homeodomain-containing transcriptional factor that binds to and activates the promoters of thyroid and lung-specific genes, such as thyroglobulin, thyroid peroxidase, and thyroid stimulating hormone receptor. TTF-1 is known to play a key role in the development of the thyroid. However, the precise mechanism of TTF-1 gene transcription in human thyroid cells has not been studied. The expression of transcriptional activity in various lengths of the 5′-flanking region of the human TTF -1 gene was studied in TTF-1 positive and negative human thyroid cell lines. Increased transcriptional activity was observed in thyroid cell lines containing plasmids that coded for a sequence proximal to the transcription start site of exon 1 of the TTF-1 gene. However, we did not observe any difference in promoter activity in the region up to −2.6 kb from the proximal transcription start site of the TTF-1 gene between TTF-1 positive and negative cells. These results suggest that the proximal 5′-flanking region of the human TTF -1 gene does not contain sufficient cis-active regulatory information to direct gene expression in thyroid cells, and that other cis- or trans-acting factors participate in the thyroid specific gene expression of TTF-1
Caveolin-1 overexpression is an early event in the progression of papillary carcinoma of the thyroid
Caveolin-1 is a major structural component of caveolae, which are plasma membrane microdomains implicated in the regulation of intracellular signalling pathways. Previous in vitro and in vivo studies on the function of caveolin-1 in carcinoma showed controversial results, indicating that the physiological role of caveolin-1 varies according to the origin of carcinoma. In this study, we investigated caveolin-1 expression in thyroid neoplasms by means of immunohistochemistry using a rabbit polyclonal antibody against caveolin-1. Normal follicular cells did not express caveolin-1. In papillary carcinoma, caveolin-1 expression was observed in high incidence, and especially in microcancer (less than 1.0 cm in diameter), caveolin-1 was positive in all cases except one. In undifferentiated (anaplastic) carcinoma, its incidence was significantly reduced. On the other hand, all cases of follicular carcinoma and adenoma were classified as negative for caveolin-1. These results suggest that caveolin-1 may play a role predominantly in the early phase of papillary carcinoma, whereas it has little influence on follicular tumours
A comprehensive overview of radioguided surgery using gamma detection probe technology
The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology
Applicability of Preoperative Nuclear Morphometry to Evaluating Risk for Cervical Lymph Node Metastasis in Oral Squamous Cell Carcinoma
Background: We previously reported the utility of preoperative nuclear morphometry for evaluating risk for cervical lymph node metastases in tongue squamous cell carcinoma. The risk for lymph node metastasis in oral squamous cell carcinoma, however, is known to differ depending on the anatomical site of the primary tumor, such as the tongue, gingiva, mouth floor, and buccal mucosa. In this study, we evaluated the applicability of this morphometric technique to evaluating the risk for cervical lymph node metastasis in oral squamous cell carcinoma. Methods: A digital image system was used to measure the mean nuclear area, mean nuclear perimeter, nuclear circular rate, ratio of nuclear length to width (aspect ratio), and nuclear area coefficient of variation (NACV). Relationships between these parameters and nodal status were evaluated by t-test and logistic regression analysis. Results: Eighty-eight cases of squamous cell carcinoma (52 of the tongue, 25 of the gingiva, 4 of the buccal mucosa, and 7 of the mouth floor) were included: 46 with positive node classification and 42 with negative node classification. Nuclear area and perimeter were significantly larger in node-positive cases than in nodenegative cases; however, there were no significant differences in circular rate, aspect ratio, or NACV. We derived two risk models based on the results of multivariate analysis: Model 1, which identified age and mean nuclear area and Model 2, which identified age and mean nuclear perimeter. It should be noted that primary tumor site was not associated the pN-positive status. There were no significant differences in pathological nodal status by aspect ratio, NACV, or primary tumor site. Conclusion: Our method of preoperative nuclear morphometry may contribute valuable information to evaluations of the risk for lymph node metastasis in oral squamous cell carcinoma
- …