382 research outputs found

    Helical Magnetic Fields from Inflation

    Full text link
    We analyze the generation of seed magnetic fields during de Sitter inflation considering a non-invariant conformal term in the electromagnetic Lagrangian of the form −14I(ϕ)FμνF~μν-\frac14 I(\phi) F_{\mu \nu} \widetilde{F}^{\mu \nu}, where I(ϕ)I(\phi) is a pseudoscalar function of a non-trivial background field ϕ\phi. In particular, we consider a toy model, that could be realized owing to the coupling between the photon and either a (tachyonic) massive pseudoscalar field and a massless pseudoscalar field non-minimally coupled to gravity, where II follows a simple power-law behavior I(k,η)=g/(−kη)βI(k,\eta) = g/(-k\eta)^{\beta} during inflation, while it is negligibly small subsequently. Here, gg is a positive dimensionless constant, kk the wavenumber, η\eta the conformal time, and β\beta a real positive number. We find that only when β=1\beta = 1 and 0.1≲g≲20.1 \lesssim g \lesssim 2 astrophysically interesting fields can be produced as excitation of the vacuum, and that they are maximally helical.Comment: 17 pages, 1 figure, subsection IIc and references added; accepted for publication in IJMP

    Tables of Hyperonic Matter Equation of State for Core-Collapse Supernovae

    Full text link
    We present sets of equation of state (EOS) of nuclear matter including hyperons using an SU_f(3) extended relativistic mean field (RMF) model with a wide coverage of density, temperature, and charge fraction for numerical simulations of core collapse supernovae. Coupling constants of Sigma and Xi hyperons with the sigma meson are determined to fit the hyperon potential depths in nuclear matter, U_Sigma(rho_0) ~ +30 MeV and U_Xi(rho_0) ~ -15 MeV, which are suggested from recent analyses of hyperon production reactions. At low densities, the EOS of uniform matter is connected with the EOS by Shen et al., in which formation of finite nuclei is included in the Thomas-Fermi approximation. In the present EOS, the maximum mass of neutron stars decreases from 2.17 M_sun (Ne mu) to 1.63 M_sun (NYe mu) when hyperons are included. In a spherical, adiabatic collapse of a 15M⊙M_\odot star by the hydrodynamics without neutrino transfer, hyperon effects are found to be small, since the temperature and density do not reach the region of hyperon mixture, where the hyperon fraction is above 1 % (T > 40 MeV or rho_B > 0.4 fm^{-3}).Comment: 23 pages, 6 figures (Fig.3 and related comments on pion potential are corrected in v3.

    Bioprocessing in Microgravity: Applications of Continuous Flow Electrophoresis to Rat Anterior Pituitary Particles

    Get PDF
    In this report we describe the results of a continuous flow electrophoresis (CFE) experiment done on STS-65 in which we tested the idea that intracellular growth hormone (GH) particles contained in a cell lysate prepared from cultured rat anterior pituitary cells in microgravity might have different electrophoretic mobilities from those in a synchronous ground control cell lysate. Collectively, the results suggested that CFE processing in microgravity was better than on earth; more samples could be processed at a time (6 x) and more variant forms of GH molecules could be resolved as well. We had also hoped to carry out a pituitary cell CFE experiment, but failure of the hardware required that the actual cell electrophoresis trials be done on earth shortly after Shuttle landing. Data from these experiments showed that space-flown cells possessed a higher electrophoretic mobility than ground control cells, thereby offering evidence for the idea that exposure of cultured cells to microgravity can change their net surface charge-density especially when the cells are fed. Collectively, the results from this pituitary cell experiment document the advantage of using coupled cell culture and CFE techniques in the microgravity environment

    A diffuse scattering model of ultracold neutrons on wavy surfaces

    Full text link
    Metal tubes plated with nickel-phosphorus are used in many fundamental physics experiments using ultracold neutrons (UCN) because of their ease of fabrication. These tubes are usually polished to a average roughness of 25-150 nm. However, there is no scattering model that accurately describes UCN scattering on such a rough guide surface with a mean-square roughness larger than 5 nm. We therefore developed a scattering model for UCN in which scattering from random surface waviness with a size larger than the UCN wavelength is described by a microfacet Bidirectional Reflectance Distribution Function model (mf-BRDF model), and scattering from smaller structures by the Lambert's cosine law (Lambert model). For the surface waviness, we used the statistical distribution of surface slope measured by an atomic force microscope on a sample piece of guide tube as input of the model. This model was used to describe UCN transmission experiments conducted at the pulsed UCN source at J-PARC. In these experiments, a UCN beam collimated to a divergence angle smaller than ±6∘\pm 6^{\circ} was directed into a guide tube with a mean-square roughness of 6.4 nm to 17 nm at an oblique angle, and the UCN transport performance and its time-of-flight distribution were measured while changing the angle of incidence. The mf-BRDF model combined with the Lambert model with scattering probability pL=0.039±0.003p_{L} = 0.039\pm0.003 reproduced the experimental results well. We have thus established a procedure to evaluate the characteristics of UCN guide tubes with a surface roughness of approximately 10 nm.Comment: 15 pages, 11 figure

    Natural Inflation, Planck Scale Physics and Oscillating Primordial Spectrum

    Full text link
    In the ``natural inflation'' model, the inflaton potential is periodic. We show that Planck scale physics may induce corrections to the inflaton potential, which is also periodic with a greater frequency. Such high frequency corrections produce oscillating features in the primordial fluctuation power spectrum, which are not entirely excluded by the current observations and may be detectable in high precision data of cosmic microwave background (CMB) anisotropy and large scale structure (LSS) observations.Comment: 20 pages, 11 figures. To appear in Int J Mod. Phys.

    Tools for Assessing the Protective Efficacy of TB Vaccines in Humans: in vitro Mycobacterial Growth Inhibition Predicts Outcome of in vivo Mycobacterial Infection.

    Get PDF
    Tuberculosis (TB) remains a leading global cause of morbidity and mortality and an effective new vaccine is urgently needed. A major barrier to the rational development of novel TB vaccines is the lack of a validated immune correlate or biomarker of protection. Mycobacterial Growth Inhibition Assays (MGIAs) provide an unbiased measure of ability to control mycobacterial growth in vitro, and may represent a functional correlate of protection. However, the biological relevance of any potential correlate can only be assessed by determining the association with in vivo protection from either a controlled mycobacterial infection or natural development of TB disease. Our data demonstrate that the direct MGIA using peripheral blood mononuclear cells (PBMC) is measuring a biologically relevant response that correlates with protection from in vivo human BCG infection across two independent cohorts. This is the first report of an MGIA correlating with in vivo protection in the species-of-interest, humans, and furthermore on a per-individual as well as per-group basis. Control of mycobacterial growth in the MGIA is associated with a range of immune parameters measured post-BCG infection in vivo including the IFN-γ ELISpot response, frequency of PPD-specific IFN-γ or TNF-α producing CD4+ T cells and frequency of specific sub-populations of polyfunctional CD4+ T cells. Distinct transcriptomic profiles are associated with good vs. poor mycobacterial control in the MGIA, with good controllers showing enrichment for gene sets associated with antigen processing/presentation and the IL-23 pathway, and poor controllers showing enrichment for hypoxia-related pathways. This study represents an important step toward biologically validating the direct PBMC MGIA for use in TB vaccine development and furthermore demonstrates the utility of this assay in determining relevant immune mechanisms and pathways of protection

    `Standard' Cosmological model & beyond with CMB

    Full text link
    Observational Cosmology has indeed made very rapid progress in the past decade. The ability to quantify the universe has largely improved due to observational constraints coming from structure formation Measurements of CMB anisotropy and, more recently, polarization have played a very important role. Besides precise determination of various parameters of the `standard' cosmological model, observations have also established some important basic tenets that underlie models of cosmology and structure formation in the universe -- `acausally' correlated initial perturbations in a flat, statistically isotropic universe, adiabatic nature of primordial density perturbations. These are consistent with the expectation of the paradigm of inflation and the generic prediction of the simplest realization of inflationary scenario in the early universe. Further, gravitational instability is the established mechanism for structure formation from these initial perturbations. The signature of primordial perturbations observed as the CMB anisotropy and polarization is the most compelling evidence for new, possibly fundamental, physics in the early universe. The community is now looking beyond the estimation of parameters of a working `standard' model of cosmology for subtle, characteristic signatures from early universe physics.Comment: 16 pages, 6 figures, Plenary talk, Proc. of GR-19, Mexico City, Mexico (Jul 5-9, 2010). To appear in a special issue in Class. Q. Gra

    Cosmology with CMB anisotropy

    Get PDF
    Measurements of CMB anisotropy and, more recently, polarization have played a very important role allowing precise determination of various parameters of the `standard' cosmological model. The expectation of the paradigm of inflation and the generic prediction of the simplest realization of inflationary scenario in the early universe have also been established -- `acausally' correlated initial perturbations in a flat, statistically isotropic universe, adiabatic nature of primordial density perturbations. Direct evidence for gravitational instability mechanism for structure formation from primordial perturbations has been established. In the next decade, future experiments promise to strengthen these deductions and uncover the remaining crucial signature of inflation -- the primordial gravitational wave background.Comment: Plenary talk at the IXth. International Workshop on High Energy Physics Phenomenology (WHEPP-9), Institute of Physics, Bhubaneshwar, India. Jan 3-14, 2006; To appear in the Proceedings to be published in Pramana; 12 pages, 2 figure
    • …
    corecore