167 research outputs found

    Importance of folate in human nutrition

    Get PDF
    From a public health perspective, some of the new insights into folic acid nutrition are of significance. Folate intake recommendations vary under different conditions. Intake of 350 µg is required to maintain plasma homocysteine levels, 650 µg for those with elevated plasma homocysteine, about 400 µg for women planning to become pregnant and 4000 mg for those with history of neural tube defect affected pregnancy. This raises the question whether the folate intake is adequate for the general population, particularly in the vulnerable groups or whether there is a need for scientists to take a fresh view of the requirements, recommended dietary intakes, and consider intervention measures which will have impact on the folate nutritional status. The recommendations should provide a margin of safety to allow for decreased intake, increased requirements, individual variability and bioavailability of natural food folates. The folate intake and nutriture in relation to India and other developing countries needs careful consideration to reduce anemia, neural tube defects and possibly impact on the high incidence of cardiovascular diseases

    Infertility in WNIN Obese Mutant Rats—Causes?

    Get PDF
    We are maintaining two obese mutant rat strains (WNIN/Ob and WNIN/GR-Ob) in our animal facility since 1997. These rat colonies are perpetuated by crossing heterozygous littermates, since the obese phenotypes of both genders turned out be infertile. The present study revealed the reasons for this infertility. The male obese rats, though appeared normal in terms of sperm count, sperm motility and testis histology, however found wanting in terms of libido. This appeared to be due to low circulating testosterone levels seen in these animals, which should also account for low testis and accessory gland weights seen in them. The females exhibited delayed puberty, in terms of days taken for opening of vagina, irregular oestrus cycles and had small ovaries and short and stumpy uterine horns. The FSH peak observed in control lean animals during oestrus stage of the sexual cycle and also the E2 peak of normal oestrus cycle was conspicuously absent in these animals. They also showed elevated levels of progesterone throughout the sexual cycle. Thus the infertility seen in these mutants could be attributed to their abnormal gonadosteroid levels and the resulting anatomical and physiological defects

    Interactive effects of cocaine on HIV infection: implication in HIV-associated neurocognitive disorder and neuroAIDS.

    Get PDF
    Substantial epidemiological studies suggest that not only, being one of the reasons for the transmission of the human immunodeficiency virus (HIV), but drug abuse also serves its role in determining the disease progression and severity among the HIV infected population. This article focuses on the drug cocaine, and its role in facilitating entry of HIV into the CNS and mechanisms of development of neurologic complications in infected individuals. Cocaine is a powerfully addictive central nervous system stimulating drug, which increases the level of neurotransmitter dopamine (DA) in the brain, by blocking the dopamine transporters (DAT) which is critical for DA homeostasis and neurocognitive function. Tat protein of HIV acts as an allosteric modulator of DAT, where as cocaine acts as reuptake inhibitor. When macrophages in the CNS are exposed to DA, their number increases. These macrophages release inflammatory mediators and neurotoxins, causing chronic neuroinflammation. Cocaine abuse during HIV infection enhances the production of platelet monocyte complexes (PMCs), which may cross transendothelial barrier, and result in HIV-associated neurocognitive disorder (HAND). HAND is characterized by neuroinflammation, including astrogliosis, multinucleated giant cells, and neuronal apoptosis that is linked to progressive virus infection and immune deterioration. Cocaine and viral proteins are capable of eliciting signaling transduction pathways in neurons, involving in mitochondrial membrane potential loss, oxidative stress, activation of JNK, p38, and ERK/MAPK pathways, and results in downstream activation of NF-κB that leads to HAND. Tat-induced inflammation provokes permeability of the blood brain barrier (BBB) in the platelet dependent manner, which can potentially be the reason for progression to HAND during HIV infection. A better understanding on the role of cocaine in HIV infection can give a clue in developing novel therapeutic strategies against HIV-1 infection in cocaine using HIV infected population

    Interactive Effects of Morphine on HIV Infection: Role in HIV-Associated Neurocognitive Disorder

    Get PDF
    HIV epidemic continues to be a severe public health problem and concern within USA and across the globe with about 33 million people infected with HIV. The frequency of drug abuse among HIV infected patients is rapidly increasing and is another major issue since injection drug users are at a greater risk of developing HIV associated neurocognitive dysfunctions compared to non-drug users infected with HIV. Brain is a major target for many of the recreational drugs and HIV. Evidences suggest that opiate drug abuse is a risk factor in HIV infection, neural dysfunction and progression to AIDS. The information available on the role of morphine as a cofactor in the neuropathogenesis of HIV is scanty. This review summarizes the results that help in understanding the role of morphine use in HIV infection and neural dysfunction. Studies show that morphine enhances HIV-1 infection by suppressing IL-8, downregulating chemokines with reciprocal upregulation of HIV coreceptors. Morphine also activates MAPK signaling and downregulates cAMP response element-binding protein (CREB). Better understanding on the role of morphine in HIV infection and mechanisms through which morphine mediates its effects may help in devising novel therapeutic strategies against HIV-1 infection in opiate using HIV-infected population

    Reactive oxygen species (ROS) mediated enhanced anti-candidal activity of ZnS-ZnO nanocomposites with low inhibitory concentrations

    Get PDF
    Enhanced antifungal activity against the yeast species Candida albicans, Candida tropicalis and Saccharomyces cerevisiae was displayed by ZnS-ZnO nanocomposites prepared by a simple precipitation technique. The antifungal activity was significantly more in the presence of indoor light than under dark conditions and was a clear confirmation of the inhibitory role of reactive oxygen species (ROS) generated in situ by the photocatalytic nanocomposites. The generation of ROS was further evidenced by flow cytometry results and membrane permeabilisation studies. Time kill assay and growth curve analysis indicated diminished antifungal activity under dark conditions due primarily to Zn2+ efflux in solution. © 2015 The Royal Society of Chemistry

    Sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1)-facilitated HIV restriction in astrocytes is regulated by miRNA-181a

    Get PDF
    Background Although highly active antiretroviral therapy (HAART) has significantly reduced the morbidity and mortality in HIV patients, virus continues to reside in the central nervous system (CNS) reservoir. Hence, a complete eradication of virus remains a challenge. HIV productively infects microglia/macrophages, but astrocytes are generally restricted to HIV infection. The relative importance of the possible replication blocks in astrocytes, however, is yet to be delineated. A recently identified restriction factor, sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1), restricts HIV infection in resting CD4+T cells and in monocyte-derived dendritic cells. However, SAMHD1 expression and HIV-1 restriction activity regulation in the CNS cells are unknown. Though, certain miRNAs have been implicated in HIV restriction in resting CD4+T cells, their role in the CNS HIV restriction and their mode of action are not established. We hypothesized that varying SAMHD1 expression would lead to restricted HIV infection and host miRNAs would regulate SAMHD1 expression in astrocytes. Results We found increased SAMHD1 expression and decreased miRNA expression (miR-181a and miR-155) in the astrocytes compared to microglia. We report for the first time that miR-155 and miR-181a regulated the SAMHD1 expression. Overexpression of these cellular miRNAs increased viral replication in the astrocytes, through SAMHD1 modulation. Reactivation of HIV replication was accompanied by decrease in SAMHD1 expression. Conclusions Here, we provide a proof of concept that increased SAMHD1 in human astrocytes is in part responsible for the HIV restriction, silencing of which relieves this restriction. At this time, this concept is of theoretical nature. Further experiments are needed to confirm if HIV replication can be reactivated in the CNS reservoir
    corecore