CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Reactive oxygen species (ROS) mediated enhanced anti-candidal activity of ZnS-ZnO nanocomposites with low inhibitory concentrations
Authors
B. Dileep Kumar
U. Hareesh
+6 more
N. Madhavan
A. Mohamed
Balagopal Nair
S. Nishanth Kumar
P. Suyana
K. Warrier
Publication date
1 January 2015
Publisher
'Royal Society of Chemistry (RSC)'
Doi
Abstract
Enhanced antifungal activity against the yeast species Candida albicans, Candida tropicalis and Saccharomyces cerevisiae was displayed by ZnS-ZnO nanocomposites prepared by a simple precipitation technique. The antifungal activity was significantly more in the presence of indoor light than under dark conditions and was a clear confirmation of the inhibitory role of reactive oxygen species (ROS) generated in situ by the photocatalytic nanocomposites. The generation of ROS was further evidenced by flow cytometry results and membrane permeabilisation studies. Time kill assay and growth curve analysis indicated diminished antifungal activity under dark conditions due primarily to Zn2+ efflux in solution. © 2015 The Royal Society of Chemistry
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1039%2Fc5ra13316e
Last time updated on 19/06/2021
espace@Curtin
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:espace.curtin.edu.au:20.50...
Last time updated on 18/04/2019