6,853 research outputs found

    Absence of a Lower Limit on Omega_b in Inhomogeneous Primordial Nucleosynthesis

    Full text link
    We show that a class of inhomogeneous big bang nucleosynthesis models exist which yield light-element abundances in agreement with observational constraints for baryon-to-photon ratios significantly smaller than those inferred from standard homogeneous big bang nucleosynthesis (HBBN). These inhomogeneous nucleosynthesis models are characterized by a bimodal distribution of baryons in which some regions have a local baryon-to-photon ratio eta=3*10e-10, while the remaining regions are baryon-depleted. HBBN scenarios with primordial (2H+3He)/H<9*10e-5 necessarily require that most baryons be in a dark or non-luminous form, although new observations of a possible high deuterium abundance in Lyman-alpha clouds may relax this requirement somewhat. The models described here present another way to relax this requirement and can even eliminate any lower bound on the baryon-to-photon ratio.Comment: 13 pages, 2 figures (available upon request by email), plain te

    Enhanced Heavy-Element Formation in Baryon-Inhomogeneous Big-Bang Models

    Full text link
    We show that primordial nucleosynthesis in baryon inhomogeneous big-bang models can lead to significant heavy-element production while still satisfying all the light-element abundance constraints including the low lithium abundance observed in population II stars. The parameters which admit this solution arise naturally from the process of neutrino induced inflation of baryon inhomogeneities prior to the epoch of nucleosynthesis. These solutions entail a small fraction of baryons (\le 2\%) in very high density regions with local baryon-to-photon ratio ηh≈10−4\eta^h\approx 10^{-4}, while most baryons are at a baryon-to-photon ratio which optimizes the agreement with light-element abundances. The model would imply a unique signature of baryon inhomogeneities in the early universe, evidenced by the existence of primordial material containing heavy-element products of proton and alpha- burning reactions with an abundance of [Z]∼−6to−4[Z]\sim -6 to -4.Comment: 19 pages in plain Tex, 5 figures (not included) available by fax or mail upon request, ApJ in press, L

    Drell-Yan, ZZ, W+W- production in SM & ADD model to NLO+PS accuracy at the LHC

    Get PDF
    In this paper, we present the next-to-leading order QCD corrections for di-lepton, di-electroweak boson (ZZ, W+W-) production in both the SM and the ADD model, matched to the HERWIG parton-shower using the aMC@NLO framework. A selection of results at the 8 TeV LHC, which exhibits deviation from the SM as a result of the large extra-dimension scenario are presented.Comment: 12 pages, 10 figures, search sensitivity for the 14 TeV LHC discussed, version to appear in Eur. Phys. J.

    Imaging density disturbances in water with 41.3 attosecond time resolution

    Full text link
    We show that the momentum flexibility of inelastic x-ray scattering may be exploited to invert its loss function, alowing real time imaging of density disturbances in a medium. We show the disturbance arising from a point source in liquid water, with a resolution of 41.3 attoseconds (4.13×10−174.13 \times 10^{-17} sec) and 1.27 A˚\AA (1.27×10−81.27 \times 10^{-8} cm). This result is used to determine the structure of the electron cloud around a photoexcited molecule in solution, as well as the wake generated in water by a 9 MeV gold ion. We draw an analogy with pump-probe techniques and suggest that energy-loss scattering may be applied more generally to the study of attosecond phenomena.Comment: 4 pages, 4 color figure

    Generation of Curvature Perturbations with Extra Anisotropic Stress

    Full text link
    We study the evolution of curvature perturbations and the cosmic microwave background (CMB) power spectrum in the presence of an hypothesized extra anisotropic stress which might arise, for example, from the dark radiation term in brane-world cosmology. We evolve the scalar modes of such perturbations before and after neutrino decoupling and analyze their effects on the CMB spectrum. A novel result of this work is that the cancellation of the neutrino and extra anisotropic stress could lead to a spectrum of residual curvature perturbations which is similar to the observed CMB power spectrum. This implies a possible additional consideration in the determination of cosmological parameters from the CMB analysis.Comment: 13 pages, 2 figures; improved discussio

    PDF and scale uncertainties of various DY distributions in ADD and RS models at hadron colliders

    Get PDF
    In the extra dimension models of ADD and RS we study the dependence of the various parton distribution functions on observable of Drell-Yan process to NLO in QCD at LHC and Tevatron energies. Uncertainties at LHC due to factorisation scales in going from leading to next-to-leading order in QCD for the various distributions get reduced by about 2.75 times for a μF\mu_F range 0.5 Q<μF<1.5 Q0.5 ~Q < \mu_F < 1.5 ~Q. Further uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.Comment: 27 pages, 11 figures, the version to appear in European Physical Journal
    • …
    corecore