18,793 research outputs found

    When is electromagnetic spectrum fungible?

    Get PDF
    Fungibility is a common assumption for market-based spectrum management. In this paper, we explore the dimensions of practical fungibility of frequency bands from the point of view of the spectrum buyer who intends to use it. The exploration shows that fungibility is a complex, multidimensional concept that cannot casually be assumed. We develop two ideas for quantifying fungibility-(i) of a fungibility space in which the 'distance' between two slices of spectrum provides score of fungibility and (ii) a probabilistic score of fungibility. © 2012 IEEE

    Can coronal hole spicules reach coronal temperatures?

    Full text link
    We aim with the present study to provide observational evidences on whether coronal hole spicules reach coronal temperatures. We combine multi-instrument co-observations obtained with the SUMER/SoHO and with the EIS/SOT/XRT/Hinode. The analysed three large spicules were found to be comprised of numerous thin spicules which rise, rotate and descend simultaneously forming a bush-like feature. Their rotation resembles the untwisting of a large flux rope. They show velocities ranging from 50 to 250 km/s. We clearly associated the red- and blue-shifted emissions in transition region lines with rotating but also with rising and descending plasmas, respectively. Our main result is that these spicules although very large and dynamic, show no presence in spectral lines formed at temperatures above 300 000 K. The present paper brings out the analysis of three Ca II H large spicules which are composed of numerous dynamic thin spicules but appear as macrospicules in EUV lower resolution images. We found no coronal counterpart of these and smaller spicules. We believe that the identification of phenomena which have very different origins as macrospicules is due to the interpretation of the transition region emission, and especially the He II emission, wherein both chromospheric large spicules and coronal X-ray jets are present. We suggest that the recent observation of spicules in the coronal AIA/SDO 171 A and 211 A channels is probably due to the existence of transition region emission there.Comment: 4 pages, 4 figures, accepted for publication in A&

    Magnetic Reconnection resulting from Flux Emergence: Implications for Jet Formation in the lower solar atmosphere?

    Full text link
    We aim at investigating the formation of jet-like features in the lower solar atmosphere, e.g. chromosphere and transition region, as a result of magnetic reconnection. Magnetic reconnection as occurring at chromospheric and transition regions densities and triggered by magnetic flux emergence is studied using a 2.5D MHD code. The initial atmosphere is static and isothermal, with a temperature of 20,000 K. The initial magnetic field is uniform and vertical. Two physical environments with different magnetic field strength (25 G and 50 G) are presented. In each case, two sub-cases are discussed, where the environments have different initial mass density. In the case where we have a weaker magnetic field (25 G) and higher plasma density (Ne=2×1011N_e=2\times 10^{11} cm3^{-3}), valid for the typical quiet Sun chromosphere, a plasma jet would be observed with a temperature of 2--3 ×104\times 10^4 K and a velocity as high as 40 km/s. The opposite case of a medium with a lower electron density (Ne=2×1010N_e=2\times 10^{10} cm3^{-3}), i.e. more typical for the transition region, and a stronger magnetic field of 50 G, up-flows with line-of-sight velocities as high as 90 km/s and temperatures of 6 ×\times 105^5 K, i.e. upper transition region -- low coronal temperatures, are produced. Only in the latter case, the low corona Fe IX 171 \AA\ shows a response in the jet which is comparable to the O V increase. The results show that magnetic reconnection can be an efficient mechanism to drive plasma outflows in the chromosphere and transition region. The model can reproduce characteristics, such as temperature and velocity for a range of jet features like a fibril, a spicule, an hot X-ray jet or a transition region jet by changing either the magnetic field strength or the electron density, i.e. where in the atmosphere the reconnection occurs.Comment: 11 pages, 13 figures, 2 table

    Statistical Analysis of Small Ellerman Bomb Events

    Full text link
    The properties of Ellerman bombs (EBs), small-scale brightenings in the H-alpha line wings, have proved difficult to establish due to their size being close to the spatial resolution of even the most advanced telescopes. Here, we aim to infer the size and lifetime of EBs using high-resolution data of an emerging active region collected using the Interferometric BIdimensional Spectrometer (IBIS) and Rapid Oscillations of the Solar Atmosphere (ROSA) instruments as well as the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We develop an algorithm to track EBs through their evolution, finding that EBs can often be much smaller (around 0.3") and shorter lived (less than 1 minute) than previous estimates. A correlation between G-band magnetic bright points and EBs is also found. Combining SDO/HMI and G-band data gives a good proxy of the polarity for the vertical magnetic field. It is found that EBs often occur both over regions of opposite polarity flux and strong unipolar fields, possibly hinting at magnetic reconnection as a driver of these events.The energetics of EB events is found to follow a power-law distribution in the range of "nano-flare" (10^{22-25} ergs).Comment: 19 pages. 7 Figure

    Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses.

    Get PDF
    Flaviviruses continue to cause globally relevant epidemics and have emerged or re-emerged in regions that were previously unaffected. Factors determining emergence of flaviviruses and continuing circulation in sylvatic cycles are incompletely understood. Here we identify potential sylvatic reservoirs of flaviviruses and characterize the macro-ecological traits common to known wildlife hosts to predict the risk of sylvatic flavivirus transmission among wildlife and identify regions that could be vulnerable to outbreaks. We evaluate variability in wildlife hosts for zoonotic flaviviruses and find that flaviviruses group together in distinct clusters with similar hosts. Models incorporating ecological and climatic variables as well as life history traits shared by flaviviruses predict new host species with similar host characteristics. The combination of vector distribution data with models for flavivirus hosts allows for prediction of  global vulnerability to flaviviruses and provides potential targets for disease surveillance in animals and humans

    HIV-associated multi-centric Castleman’s disease with multiple organ failure: cuccessful treatment with rituximab

    Get PDF
    Introduction: Multicentric Castleman's Disease (MCD), a lymphoproliferative disorder associated with Human Herpes Virus-8 (HHV-8) infection, is increasing in incidence amongst HIV patients. This condition is associated with lymphadenopathy, polyclonal gammopathy, hepato-splenomegaly and systemic symptoms. A number of small studies have demonstrated the efficacy of the anti-CD20 monoclonal antibody, rituximab, in treating this condition. Case presentation: We report the case of a 46 year old Zambian woman who presented with pyrexia, diarrhoea and vomiting, confusion, lymphadenopathy, and renal failure. She rapidly developed multiple organ failure following the initiation of treatment of MCD with rituximab. Following admission to intensive care (ICU), she received prompt multi-organ support. After 21 days on the ICU she returned to the haematology medical ward, and was discharged in remission from her disease after 149 days in hospital. Conclusion: Rituximab, the efficacy of which has thus far been examined predominantly in patients outside the ICU, in conjunction with extensive organ support was effective treatment for MCD with associated multiple organ failure. There is, to our knowledge, only one other published report of its successful use in an ICU setting, where it was combined with cyclophosphamide, adriamycin and prednisolone. Reports such as ours support the notion that critically unwell patients with HIV and haematological disease can benefit from intensive care

    Highly optimized transitions to turbulence

    Get PDF
    We study the Navier-Stokes equations in three dimensional plane Couette flow geometry subject to stream-wise constant initial conditions and perturbations. The resulting two dimensional/three component (2D/3C) model has no bifurcations and is globally (non-linearly) stable for all Reynolds numbers R, yet has a total transient energy amplification that scales like R/sup 3/. These transients also have the particular dynamic flow structures known to play a central role in wall bounded shear flow transition and turbulence. This suggests a highly optimized tolerance (HOT) model of shear flow turbulence, where streamlining eliminates generic bifurcation cascade transitions that occur in bluff body flows, resulting in a flow which is stable to arbitrary changes in Reynolds number but highly fragile in amplifying arbitrarily small perturbations. This result indicates that transition and turbulence in special streamlined geometries is not a problem of linear or nonlinear instability, but rather a problem of robustness

    Emission of polarized photons from unpolarized electrons moving in crystals

    Get PDF
    Radiation emitted by unpolarized high-energy electrons penetrating crystals may be linearly polarized. This occurs when the particle velocity makes an angle, with respect to some major crystal axis, being sufficiently larger than the axial-channelling angle. For such orientation, a complete description of spectral and polarization characteristics of the radiation is derived. At planar channelling, a non-perturbative contribution to the probability of the process appears caused by the plane field, and we must solve exactly a one~-~dimensional mechanical problem. For that, the approximate form of the actual plane potential is suggested which provides a precise fit for any crystal plane and an analytical solution to the motion problem. In a practical case, we must consider electron-photon showers developing in sufficiently thick crystals. For the first time, this development is described taking into account the polarization of photons. We discuss qualitative features of the phenomenon, present results of numerical calculations for thin and thick crystals, and evaluate the possibility of the use of differently oriented crystals in a polarized hard photon source.Comment: 16 pages, 7 PostScript figure
    corecore