11 research outputs found

    Novel transcripts reveal a complex structure of the human TRKA gene and imply the presence of multiple protein isoforms

    Get PDF
    Publisher Copyright: © 2015 Luberg et al.Background: Tropomyosin-related kinase A (TRKA) is a nerve growth factor (NGF) receptor that belongs to the tyrosine kinase receptor family. It is critical for the correct development of many types of neurons including pain-mediating sensory neurons and also controls proliferation, differentiation and survival of many neuronal and non-neuronal cells. TRKA (also known as NTRK1) gene is a target of alternative splicing which can result in several different protein isoforms. Presently, three human isoforms (TRKAI, TRKAII and TRKAIII) and two rat isoforms (TRKA L0 and TRKA L1) have been described. Results: We show here that human TRKA gene is overlapped by two genes and spans 67 kb-almost three times the size that has been previously described. Numerous transcription initiation sites from eight different 5' exons and a sophisticated splicing pattern among exons encoding the extracellular part of TRKA receptor indicate that there might be a large variety of alternative protein isoforms. TrkA genes in rat and mouse appear to be considerably shorter, are not overlapped by other genes and display more straightforward splicing patterns. We describe the expression profile of alternatively spliced TRKA transcripts in different tissues of human, rat and mouse, as well as analyze putative endogenous TRKA protein isoforms in human SH-SY5Y and rat PC12 cells. We also characterize a selection of novel putative protein isoforms by portraying their phosphorylation, glycosylation and intracellular localization patterns. Our findings show that an isoform comprising mainly of TRKA kinase domain is capable of entering the nucleus. Conclusions: Results obtained in this study refer to the existence of a multitude of TRKA mRNA and protein isoforms, with some putative proteins possessing very distinct properties.publishersversionPeer reviewe

    NTRK fusion-positive cancers and TRK inhibitor therapy

    No full text
    NTRK gene fusions involving either NTRK1, NTRK2 or NTRK3 (encoding the neurotrophin receptors TRKA, TRKB and TRKC, respectively) are oncogenic drivers of various adult and paediatric tumour types. These fusions can be detected in the clinic using a variety of methods, including tumour DNA and RNA sequencing and plasma cell-free DNA profiling. The treatment of patients with NTRK fusion-positive cancers with a first-generation TRK inhibitor, such as larotrectinib or entrectinib, is associated with high response rates (>75%), regardless of tumour histology. First-generation TRK inhibitors are well tolerated by most patients, with toxicity profiles characterized by occasional off-tumour, on-target adverse events (attributable to TRK inhibition in non-malignant tissues). Despite durable disease control in many patients, advanced-stage NTRK fusion-positive cancers eventually become refractory to TRK inhibition; resistance can be mediated by the acquisition of NTRK kinase domain mutations. Fortunately, certain resistance mutations can be overcome by second-generation TRK inhibitors, including LOXO-195 and TPX-0005 that are being explored in clinical trials. In this Review, we discuss the biology of NTRK fusions, strategies to target these drivers in the treatment-naive and acquired-resistance disease settings, and the unique safety profile of TRK inhibitors

    esults from a prospective observational study of men with premature ejaculation treated with dapoxetine or alternative care: the PAUSE study.

    No full text
    corecore