17 research outputs found
Technology developments of ELI-NP gamma beam system
The ELI-NP gamma beam system (GBS) is a linac based gamma-source in construction in Magurele (RO) by the European consortium EuroGammaS led by INFN. Photons with tunable energy, from 0.2 to 19.5 MeV, and with intensity and brilliance beyond the state of the art, will be produced by Compton back-scattering between a high quality electron beam (up to 740 MeV) and an intense laser pulse at 100 Hz repetition rate. Production of very intense photon flux with narrow bandwidth requires multi-bunch operation and laser recirculation at the interaction point. In this paper, the main technological developments carried out by the EuroGammaS consortium for the generation of the ELI-NP gamma beam will be described with a special emphasis on the electron linac technology, such as: RF-gun and C-band accelerating structures design fabrication and tests; low level RF (LLRF) and synchronization systems specifications and development. Finally, the laser recirculation apparatus design is briefly described and first results reported
Endotoxin receptor CD14 in PiZ α-1-antitrypsin deficiency individuals
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases
<p>Abstract</p> <p>Background</p> <p>Inflammatory lung diseases are a major morbidity factor in children. Therefore, novel strategies for early detection of inflammatory lung diseases are of high interest. Bacterial lipopolysaccharide (LPS) is recognized via Toll-like receptors and CD14. CD14 exists as a soluble (sCD14) and membrane-associated (mCD14) protein, present on the surface of leukocytes. Previous studies suggest sCD14 as potential marker for inflammatory diseases, but their potential role in pediatric lung diseases remained elusive. Therefore, we examined the expression, regulation and significance of sCD14 and mCD14 in pediatric lung diseases.</p> <p>Methods</p> <p>sCD14 levels were quantified in serum and bronchoalveolar lavage fluid (BALF) of children with infective (pneumonia, cystic fibrosis, CF) and non-infective (asthma) inflammatory lung diseases and healthy control subjects by ELISA. Membrane CD14 expression levels on monocytes in peripheral blood and on alveolar macrophages in BALF were quantified by flow cytometry. <it>In vitro </it>studies were performed to investigate which factors regulate sCD14 release and mCD14 expression.</p> <p>Results</p> <p>sCD14 serum levels were specifically increased in serum of children with pneumonia compared to CF, asthma and control subjects. <it>In vitro</it>, CpG induced the release of sCD14 levels in a protease-independent manner, whereas LPS-mediated mCD14 shedding was prevented by serine protease inhibition.</p> <p>Conclusions</p> <p>This study demonstrates for the first time the expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases and suggests sCD14 as potential marker for pneumonia in children.</p
Expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases
<p>Abstract</p> <p>Background</p> <p>Inflammatory lung diseases are a major morbidity factor in children. Therefore, novel strategies for early detection of inflammatory lung diseases are of high interest. Bacterial lipopolysaccharide (LPS) is recognized via Toll-like receptors and CD14. CD14 exists as a soluble (sCD14) and membrane-associated (mCD14) protein, present on the surface of leukocytes. Previous studies suggest sCD14 as potential marker for inflammatory diseases, but their potential role in pediatric lung diseases remained elusive. Therefore, we examined the expression, regulation and significance of sCD14 and mCD14 in pediatric lung diseases.</p> <p>Methods</p> <p>sCD14 levels were quantified in serum and bronchoalveolar lavage fluid (BALF) of children with infective (pneumonia, cystic fibrosis, CF) and non-infective (asthma) inflammatory lung diseases and healthy control subjects by ELISA. Membrane CD14 expression levels on monocytes in peripheral blood and on alveolar macrophages in BALF were quantified by flow cytometry. <it>In vitro </it>studies were performed to investigate which factors regulate sCD14 release and mCD14 expression.</p> <p>Results</p> <p>sCD14 serum levels were specifically increased in serum of children with pneumonia compared to CF, asthma and control subjects. <it>In vitro</it>, CpG induced the release of sCD14 levels in a protease-independent manner, whereas LPS-mediated mCD14 shedding was prevented by serine protease inhibition.</p> <p>Conclusions</p> <p>This study demonstrates for the first time the expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases and suggests sCD14 as potential marker for pneumonia in children.</p
The Natural Cytotoxicity Receptor 1 Contribution to Early Clearance of Streptococcus pneumoniae and to Natural Killer-Macrophage Cross Talk
Natural killer (NK) cells serve as a crucial first line of defense against tumors, viral and bacterial infections. We studied the involvement of a principal activating natural killer cell receptor, natural cytotoxicity receptor 1 (NCR1), in the innate immune response to S. pneumoniae infection. Our results demonstrate that the presence of the NCR1 receptor is imperative for the early clearance of S. pneumoniae. We tied the ends in vivo by showing that deficiency in NCR1 resulted in reduced lung NK cell activation and lung IFNγ production at the early stages of S. pneumoniae infection. NCR1 did not mediate direct recognition of S. pneumoniae. Therefore, we studied the involvement of lung macrophages and dendritic cells (DC) as the mediators of NK-expressed NCR1 involvement in response to S. pneumoniae. In vitro, wild type BM-derived macrophages and DC expressed ligands to NCR1 and co-incubation of S. pneumoniae-infected macrophages/DC with NCR1-deficient NK cells resulted in significantly lesser IFNγ levels compared to NCR1-expressing NK cells. In vivo, ablation of lung macrophages and DC was detrimental to the early clearance of S. pneumoniae. NCR1-expressing mice had more potent alveolar macrophages as compared to NCR1-deficient mice. This result correlated with the higher fraction of NCR1-ligandhigh lung macrophages, in NCR1-expressing mice, that had better phagocytic activity compared to NCR1-liganddull macrophages. Overall, our results point to the essential contribution of NK-expressed NCR1 in early response to S. pneumoniae infection and to NCR1-mediated interaction of NK and S. pneumoniae infected-macrophages and -DC
Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins
The serine protease autotransporters of Enterobacteriaceae (SPATEs) are secreted by pathogenic Gram-negative bacteria through the autotransporter pathway. We previously classified SPATE proteins into two classes: cytotoxic (class 1) and noncytotoxic (class 2). Here, we show that Pic, a class 2 SPATE protein produced by Shigella flexneri 2a, uropathogenic and enteroaggregative Escherichia coli strains, targets a broad range of human leukocyte adhesion proteins. Substrate specificity was restricted to glycoproteins rich in O-linked glycans, including CD43, CD44, CD45, CD93, CD162 (PSGL-1; P-selectin glycoprotein ligand 1), and the surface-attached chemokine fractalkine, all implicated in leukocyte trafficking, migration, and inflammation. N-terminal sequencing of proteolytic products revealed Pic (protease involved in colonization) cleavage sites to occur before Thr or Ser residues. The purified carbohydrate sLewis-X implied in inflammation and malignancy inhibited cleavage of PSGL-1 by Pic. Exposure of human leukocytes to purified Pic resulted in polymorphonuclear cell activation, but impaired chemotaxis and transmigration; Pic-treated T cells underwent programmed cell death. We also show that the Pic-related protease Tsh/Hbp, implicated in extraintestinal infections, exhibited a spectrum of substrates similar to those cleaved by Pic. In the guinea pig keratoconjunctivitis model, a Shigella pic mutant induced greater inflammation than its parent strain. We suggest that the class-2 SPATEs represent unique immune-modulating bacterial virulence factors