228 research outputs found

    Azimuthal flow of decay photons in relativistic nuclear collisions

    Get PDF
    An overwhelming fraction of photons from relativistic heavy ion collisions has its origin in the decay of π0\pi^0 and η\eta mesons. We calculate the azimuthal asymmetry of the decay photons for several azimuthally asymmetric pion distributions. We find that the kTk_T dependence of the elliptic flow parameterv2v_2 for the decay photons closely follows the elliptic flow parameter v2π0v_2^{\pi^0} evaluated at pT≈kT+δp_T \approx k_T+\delta, where δ≈\delta\approx 0.1 -- 0.2 GeV, for typical pion distributions measured in nucleus-nucleus collisions at relativistic energies. Similar results are obtained for photons from the 2-γ\gamma decay of η\eta mesons. Assuming that the flow of π0\pi^0 is similar to those for π+\pi^+ and π−\pi^- for which independent measurements would be generally available, this ansatz can help in identifying additional sources for photons. Taken along with quark number scaling suggested by the recombination model, it may help to estimate v2v_2 of the parton distributions in terms of azimuthal asymmetry of the decay photons at large kTk_T.Comment: 6 pages, figures added, references added, with more elaborate discussion

    Baryon Inhomogeneity Generation in the Quark-Gluon Plasma Phase

    Full text link
    We discuss the possibility of generation of baryon inhomogeneities in a quark-gluon plasma phase due to moving Z(3) interfaces. By modeling the dependence of effective mass of the quarks on the Polyakov loop order parameter, we study the reflection of quarks from collapsing Z(3) interfaces and estimate resulting baryon inhomogeneities in the context of the early universe. We argue that in the context of certain low energy scale inflationary models, it is possible that large Z(3) walls arise at the end of the reheating stage. Collapse of such walls could lead to baryon inhomogeneities which may be separated by large distances near the QCD scale. Importantly, the generation of these inhomogeneities is insensitive to the order, or even the existence, of the quark-hadron phase transition. We also briefly discuss the possibility of formation of quark nuggets in this model, as well as baryon inhomogeneity generation in relativistic heavy-ion collisions.Comment: 11 pages, 2 figures, revtex4, more detailed discussion added about formation and evolution of Z(3)domain walls in the univers

    Excited hadrons as a signal for quark-gluon plasma formation

    Full text link
    At the quark-hadron transition, when quarks get confined to hadrons, certain orbitally excited states, namely those which have excitation energies above the respective L=0L = 0 states of the same order as the transition temperature TcT_c, may form easily because of thermal velocities of quarks at the transition temperature. We propose that the ratio of multiplicities of such excited states to the respective L=0L = 0 states can serve as an almost model independent signal for the quark-gluon plasma formation in relativistic heavy-ion collisions. For example, the ratio R∗R^* of multiplicities of DSJ∗±(2317)(JP=0+)D_{SJ}^{*\pm}(2317)(J^P = 0^+) and DS∗±(2112)(JP=1−)D_S^{*\pm}(2112)(J^P = 1^-) when plotted with respect to the center of mass energy of the collision s\sqrt{s} (or vs. centrality/number of participants), should show a jump at the value of s\sqrt{s} beyond which the QGP formation occurs. This should happen irrespective of the shape of the overall plot of R∗R^* vs. s\sqrt{s}. Recent data from RHIC on Λ∗/Λ\Lambda^*/\Lambda vs. Npart_{part} for large values of Npart_{part} may be indicative of such a behavior, though there are large error bars. We give a list of several other such candidate hadronic states.Comment: 19 pages, RevTex, no figures, minor change

    Genetic variability, characters association and path analysis for yield and fruit quality components in Brinjal

    Get PDF
    The experiment was done at AB District Seed Farm, BCKV, Kalyani Simanta, West-Bengal, India during autumn-winter 2013-14 and 2014-15. The characters that exhibited higher Phenotypic and Genotypic Co-efficient of variation values were number of fruits per plant (76.86, 75.63%), fruit weight (43.88, 41.34%), harvest index (23.57, 22.29%), fruit yield per plant (53.61, 51.17%), anthocyanin in peel, total phenols and DPPH (2,2-diphenyl-l-picryl hydrazyl) free radical scavenging (FRS) capacity indicating that a greater amount of genetic variability was present for these characters which provide greater scope for selection. High heritability coupled with high genetic advance as percent of mean was observed for the characters like plant height, days to 1st flowering, days to 50% flowering, number of fruits per plant, fruit weight, harvest index, fruit yield per plant, total sugar, anthocyanin in peel, total phenols and DPPH FRS capacity depicting that these traits were under the strong influence of additive gene action and hence simple selection based on phenotypic performance of these traits would be more effective. Fruit yield per plant showed highly positive significant correlation with number of primary branches per plant, number of fruits per plant, harvest index, vitamin-A and total phenols and significant negative correlation with days to 1st flowering, TSS, total sugars and total protein. Number of fruits per plant imparted the highest positive direct effect on yield followed by harvest index, fruit weight, days to 50% flowering and anthocyanin in peel. Number of fruits per plant and days to flowering were emerged as the main casual factors for positive or negative association of several characters with fruit yield per plant. Therefore, selection for fruit yield per plant based on these characters would be reliable

    Baryon inhomogeneity generation via cosmic strings at QCD scale and its effects on nucleosynthesis

    Full text link
    We have earlier shown that cosmic strings moving through the plasma at the time of a first order quark-hadron transition in the early universe can generate large scale baryon inhomogeneities. In this paper, we calculate detailed structure of these inhomogeneities at the quark-hadron transition. Our calculations show that the inhomogeneities generated by cosmic string wakes can strongly affect nucleosynthesis calculations. A comparison with observational data suggests that such baryon inhomogeneities should not have existed at the nucleosynthesis epoch. If this disagreement holds with more accurate observations, then it will lead to the conclusions that cosmic string formation scales above 1014−101510^{14} - 10^{15} GeV may not be consistent with nucleosynthesis and CMBR observations. Alternatively, some other input in our calculation should be constrained, for example, if the average string velocity remains sufficiently small so that significant density perturbations are never produced at the QCD scale, or if strings move ultra-relativistically so that string wakes are very thin, trapping negligible amount of baryons. Finally, if quark-hadron transition is not of first order then our calculations do not apply.Comment: 24 pages, 5 figures, minor changes, version to appear in Phys. Rev.

    Heavy ion physics

    Get PDF
    The 8th workshop on high energy physics phenomenology (WHEPP-8) was held at the Indian Institute of Technology, Mumbai, India during January 5-16, 2004. One of the four working groups, group III was dedicated to QCD and heavy ion physics (HIC). The present manuscript gives a summary of the activities of group III during the workshop (see also [1] for completeness). The activities of group III were focused to understand the collective behaviours of the system formed after the collisions of two nuclei at ultra-relativistic energies from the interactions of the elementary degrees of freedom, i.e. quarks and gluons, governed by non-abelian gauge theory, i.e. QCD. This was initiated by two plenary talks on experimental overview of heavy ion collisions and lattice QCD and several working group talks and discussions

    Cosmic string induced sheet like baryon inhomogeneities at quark-hadron transition

    Get PDF
    Cosmic strings moving through matter produce wakes where density is higher than the background density. We investigate the effects of such wakes occurring at the time of a first order quark-hadron transition in the early universe and show that they can lead to separation of quark-gluon plasma phase in the wake region, while the region outside the wake converts to the hadronic phase. Moving interfaces then trap large baryon densities in sheet like regions which can extend across the entire horizon. Typical separation between such sheets, at formation, is of the order of a km. Regions of baryon inhomogeneity of this nature, i.e. having a planar geometry, and separated by such large distance scales, appear to be well suited for the recent models of inhomogeneous nucleosynthesis to reconcile with the large baryon to photon ratio implied by the recent measurements of the cosmic microwave background power spectrum.Comment: 8 pages, 3 figure

    Effect of pre-existing baryon inhomogeneities on the dynamics of quark-hadron transition

    Get PDF
    Baryon number inhomogeneities may be generated during the epoch when the baryon asymmetry of the universe is produced, e.g. at the electroweak phase transition. The regions with excess baryon number will have a lower temperature than the background temperature of the universe. Also the value of the quark hadron transition temperature TcT_c will be different in these regions as compared to the background region. Since a first-order quark hadron transition is very susceptible to small changes in temperature, we investigate the effect of the presence of such baryonic lumps on the dynamics of quark-hadron transition. We find that the phase transition is delayed in these lumps for significant overdensities. Consequently, we argue that baryon concentration in these regions grows by the end of the transition. We briefly discuss some models which may give rise to such high overdensities at the onset of the quark-hadron transition.Comment: 16 pages, no figures, minor changes, version to appear in Phys. Rev.
    • …
    corecore