22 research outputs found

    Construction of uricase-overproducing strains of Hansenula polymorpha and its application as biological recognition element in microbial urate biosensor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The detection and quantification of uric acid in human physiological fluids is of great importance in the diagnosis and therapy of patients suffering from a range of disorders associated with altered purine metabolism, most notably gout and hyperuricaemia. The fabrication of cheap and reliable urate-selective amperometric biosensors is a challenging task.</p> <p>Results</p> <p>A urate-selective microbial biosensor was developed using cells of the recombinant thermotolerant methylotrophic yeast <it>Hansenula polymorpha </it>as biorecognition element. The construction of uricase (UOX) producing yeast by over-expression of the uricase gene of <it>H. polymorpha </it>is described. Following a preliminary screening of the transformants with increased UOX activity in permeabilized yeast cells the optimal cultivation conditions for maximal UOX yield namely a 40-fold increase in UOX activity were determined.</p> <p>The UOX producing cells were coupled to horseradish peroxidase and immobilized on graphite electrodes by physical entrapment behind a dialysis membrane. A high urate selectivity with a detection limit of about 8 μM was found.</p> <p>Conclusion</p> <p>A strain of <it>H. polymorpha </it>overproducing UOX was constructed. A cheap urate selective microbial biosensor was developed.</p

    Production of yeastolates for uniform stable isotope labelling in eukaryotic cell culture.

    No full text
    Contains fulltext : 81846.pdf (publisher's version ) (Closed access)Preparation of stable isotope-labelled yeastolates opens up ways to establish more cost-effective stable isotope labelling of biomolecules in insect and mammalian cell lines and hence to employ higher eukaryotic cell lines for stable isotope labelling of complex recombinant proteins. Therefore, we evaluated several common yeast strains of the Saccharomycetoideae family as a source of high-quality, non-toxic yeastolates with the major aim to find a primary amino acid source for insect and mammalian cell culture that would allow cost-effective uniform stable isotope labelling (13C, 15N). Strains of the facultative methylotrophic yeasts Pichia pastoris and Hansenula polymorpha (Pichia angusta) as well as a strain of the baker's yeast Saccharomyces cerevisiae were compared as a source of yeastolate with respect to processing, recovery and ability to sustain growth of insect and mammalian cell lines. The best growth-supporting yeastolates were prepared via autolysis from yeast obtained from fed-batch cultures that were terminated at the end of the logarithmic growth phase. Yeastolates obtained from H. polymorpha performed well as a component of insect cell cultures, while yeastolates from S. cerevisiae and H. polymorpha both yielded good results in mammalian cell cultures. Growth of yeasts in Heine's medium without lactic acid allows relatively low concentrations of 13C and 15N sources, and this medium can be reused several times with supplementation of the 13C source only
    corecore