10,038 research outputs found

    Intra-Landau level polarization effect for a striped Hall gas

    Full text link
    We calculate the polarization function including only intra-Landau level correlation effects of striped Hall gas. Using the polarization function, the dielectric function, the dispersion of the plasmon and the correlation energy are computed in a random phase approximation (RPA) and generalized random phase approximation (GRPA). The plasmon becomes anisotropic and gapless owing to the anisotropy of the striped Hall gas and two dimensionality of the quantum Hall system. The plasmon approximately agrees with the phonon derived before by the single mode approximation. The (G)RPA correlation energy is compared with other numerical calculations.Comment: 15 pages,15 figures, revtex4, published versio

    Anthropologists Are Talking – About The Anthropocene

    Get PDF

    Integer Quantum Hall Effect with Realistic Boundary Condition : Exact Quantization and Breakdown

    Full text link
    A theory of integer quantum Hall effect(QHE) in realistic systems based on von Neumann lattice is presented. We show that the momentum representation is quite useful and that the quantum Hall regime(QHR), which is defined by the propagator in the momentum representation, is realized. In QHR, the Hall conductance is given by a topological invariant of the momentum space and is quantized exactly. The edge states do not modify the value and topological property of σxy\sigma_{xy} in QHR. We next compute distribution of current based on effective action and find a finite amount of current in the bulk and the edge, generally. Due to the Hall electric field in the bulk, breakdown of the QHE occurs. The critical electric field of the breakdown is proportional to B3/2B^{3/2} and the proportional constant has no dependence on Landau levels in our theory, in agreement with the recent experiments.Comment: 48 pages, figures not included, some additions and revision

    Compressible Anisotropic States around the Half-Filled Landau Levels

    Full text link
    Using the von Neumann lattice formalism, we study compressible anisotropic states around the half-filled Landau levels in the quantum Hall system. In these states the unidirectional charge density wave (UCDW) state seems to be the most plausible state. The charge density profile and Hartree-Fock energy of the UCDW are calculated self-consistently. The wave length dependence of the energy for the UCDW is also obtained numerically. We show that the UCDW is regarded as a collection of the one-dimensional lattice Fermi-gas systems which extend to the uniform direction. The kinetic energy of the gas system is generated dynamically from the Coulomb interaction.Comment: 6 pages, 5 figures, accepted version for publication in PR

    Axial Anomaly Effect in Chiral p-wave Superconductor

    Full text link
    We analyze the chiral p-wave superconductor in the low temperature region. The superconductor has a epsilon_{x} p_{x} + i epsilon_{y} p_{y}-wave gap in two dimensional space (2D). Near the second superconducting transition point, the system could be described by a quasi-1D chiral p-wave model in 2D. The axial anomaly occurs in such a model and causes an accumulation of the quasiparticle in an inhomogeneous magnetic field. The effect is related to the winding number of the gap.Comment: 12 pages, 1 figure, RevTex. The final version is accepted for publication in J. Phys. Soc. Jp

    Superconductivity under pressure in the Dirac semimetal PdTe2

    Full text link
    The Dirac semimetal PdTe2_2 was recently reported to be a type-I superconductor (Tc=T_c = 1.64 K, μ0Hc(0)=13.6\mu_0 H_c (0) = 13.6 mT) with unusual superconductivity of the surface sheath. We here report a high-pressure study, p≤2.5p \leq 2.5 GPa, of the superconducting phase diagram extracted from ac-susceptibility and transport measurements on single crystalline samples. Tc(p)T_c (p) shows a pronounced non-monotonous variation with a maximum Tc=T_c = 1.91 K around 0.91 GPa, followed by a gradual decrease to 1.27 K at 2.5 GPa. The critical field of bulk superconductivity in the limit T→0T \rightarrow 0, Hc(0,p)H_c(0,p), follows a similar trend and consequently the Hc(T,p)H_c(T,p)-curves under pressure collapse on a single curve: Hc(T,p)=Hc(0,p)[1−(T/Tc(p))2]H_c(T,p)=H_c(0,p)[1-(T/T_c(p))^2]. Surface superconductivity is robust under pressure as demonstrated by the large superconducting screening signal that persists for applied dc-fields Ha>HcH_a > H_c. Surprisingly, for p≥1.41p \geq 1.41 GPa the superconducting transition temperature at the surface TcST_c^S is larger than TcT_c of the bulk. Therefore surface superconductivity may possibly have a non-trivial nature and is connected to the topological surface states detected by ARPES. We compare the measured pressure variation of TcT_c with recent results from band structure calculations and discuss the importance of a Van Hove singularity.Comment: manuscript 9 pages with 8 figures + supplemental material 3 pages with 6 figure

    The square-lattice spiral magnet Ba_2CuGe_2O_7 in an in-plane magnetic field

    Full text link
    The magnetic structure of Ba_2CuGe_2O_7 is investigated by neutron diffraction in magnetic fields applied along several directions in the (a,b)(a,b) plane of the crystal. In relatively weak fields, H≲0.5H\lesssim 0.5~T, the propagation vector of the spin-spiral rotates to form a finite angle with the field direction. This angle depends on the orientation of HH itself. The rotation of the propagation vector is accompanied by a re-orientation of the plane of spin rotation in the spiral. The observed behaviour is well described by a continuous-limit form of a free energy functional that includes exchange and Dzyaloshinskii-Moriya interactions, as well as the Zeeman energy and an empirical anisotropy term.Comment: 7 pages, 6 figure

    Persistence of Covalent Bonding in Liquid Silicon Probed by Inelastic X-ray Scattering

    Full text link
    Metallic liquid silicon at 1787K is investigated using x-ray Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Our results show persistence of covalent bonding in liquid silicon and provide support for the occurrence of theoretically predicted liquid-liquid phase transition in supercooled liquid states. The population of covalent bond pairs in liquid silicon is estimated to be 17% via a maximally-localized Wannier function analysis. Compton scattering is shown to be a sensitive probe of bonding effects in the liquid state.Comment: 5pages, 3 postscript figure
    • …
    corecore