379 research outputs found

    Guillain-BarrΓ© syndrome after tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The association of Guillain-BarrΓ© syndrome with vaccination has been described in the literature; it is infrequent and controversial. An association with swine influenza, influenza, hepatitis and tetanus vaccination has been documented in few case reports.</p> <p>Case presentation</p> <p>A 40-year-old Caucasian man sustained a small right temporal epidural hematoma and nondisplaced right skull fractures after a fall from a roof. He was managed conservatively; a tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine was administered and a week later he was discharged home. A few days after his discharge, he experienced weakness and numbness in his legs, which progressed to involve his arms. Three weeks after his initial fall, he was readmitted with quadriparesis. A lumbar puncture revealed a cerebrospinal fluid protein of 790 mg/dL and one white blood cell. We diagnosed Guillain-BarrΓ© syndrome. Our patient was treated with intravenous immunoglobulin. Three months later his muscle strength had improved, but he continued to have tingling in his hands and feet and used a walker intermittently.</p> <p>Conclusion</p> <p>To the best of our knowledge, this is the first case of Guillain-BarrΓ© syndrome to be reported in the English literature after administration of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine.</p

    Combining serological and contact data to derive target immunity levels for achieving and maintaining measles elimination

    Get PDF
    AbstractBackgroundVaccination has reduced the global incidence of measles to the lowest rates in history. However, local interruption of measles virus transmission requires sustained high levels of population immunity that can be challenging to achieve and maintain. The herd immunity threshold for measles is typically stipulated at 90–95%. This figure does not easily translate into age-specific immunity levels required to interrupt transmission. Previous estimates of such levels were based on speculative contact patterns based on historical data from high-income countries. The aim of this study was to determine age-specific immunity levels that would ensure elimination of measles when taking into account empirically observed contact patterns.MethodsWe combined estimated immunity levels from serological data in 17 countries with studies of age-specific mixing patterns to derive contact-adjusted immunity levels. We then compared these to case data from the 10 years following the seroprevalence studies to establish a contact-adjusted immunity threshold for elimination. We lastly combined a range of hypothetical immunity profiles with contact data from a wide range of socioeconomic and demographic settings to determine whether they would be sufficient for elimination.ResultsWe found that contact-adjusted immunity levels were able to predict whether countries would experience outbreaks in the decade following the serological studies in about 70% of countries. The corresponding threshold level of contact-adjusted immunity was found to be 93%, corresponding to an average basic reproduction number of approximately 14. Testing different scenarios of immunity with this threshold level using contact studies from around the world, we found that 95% immunity would have to be achieved by the age of five and maintained across older age groups to guarantee elimination. This reflects a greater level of immunity required in 5–9 year olds than established previously.ConclusionsThe immunity levels we found necessary for measles elimination are higher than previous guidance. The importance of achieving high immunity levels in 5–9 year olds presents both a challenge and an opportunity. While such high levels can be difficult to achieve, school entry provides an opportunity to ensure sufficient vaccination coverage. Combined with observations of contact patterns, further national and sub-national serological studies could serve to highlight key gaps in immunity that need to be filled in order to achieve national and regional measles elimination.</jats:sec

    Frequency of medically attended adverse events following tetanus and diphtheria toxoid vaccine in adolescents and young adults: a Vaccine Safety Datalink study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Local reactions are the most commonly reported adverse events following tetanus and diphtheria toxoid (Td) vaccine and the risk of local reactions may increase with number of prior Td vaccinations.</p> <p>Methods</p> <p>To estimate the risk of medically attended local reactions following Td vaccination in adolescents and young adults we conducted a six-year retrospective cohort study assessing 436,828 Td vaccinations given to persons 9 through 25 years of age in the Vaccine Safety Datalink population from 1999 through 2004.</p> <p>Results</p> <p>Overall, the estimated risk of a medically attended local reaction was 3.6 events per 10,000 Td vaccinations. The lowest risk (2.8 events per 10,000 vaccinations) was found in the 11 to 15 year old age group. In comparison with that group, the event risks were significantly higher in both the 9 to 10 and 21 to 25 year old age groups. The risk of a local reaction was significantly higher in persons who had received another tetanus and diphtheria toxoid containing vaccine (TDCV) in the previous five years (incidence rate ratio, 2.9; 95% confidence interval, 1.2 to 7.2). Twenty-eight percent of persons with a local reaction to Td vaccine were prescribed antibiotics.</p> <p>Conclusion</p> <p>Medically attended local reactions were uncommon following Td vaccination. The risk of those reactions varied by age and by prior receipt of TDCVs. These findings provide a point of reference for future evaluations of the safety profile of newer vaccines containing tetanus or diphtheria toxoid.</p

    Combining serological and contact data to derive target immunity levels for achieving and maintaining measles elimination.

    Get PDF
    BACKGROUND: Vaccination has reduced the global incidence of measles to the lowest rates in history. However, local interruption of measles virus transmission requires sustained high levels of population immunity that can be challenging to achieve and maintain. The herd immunity threshold for measles is typically stipulated at 90-95%. This figure does not easily translate into age-specific immunity levels required to interrupt transmission. Previous estimates of such levels were based on speculative contact patterns based on historical data from high-income countries. The aim of this study was to determine age-specific immunity levels that would ensure elimination of measles when taking into account empirically observed contact patterns. METHODS: We combined estimated immunity levels from serological data in 17 countries with studies of age-specific mixing patterns to derive contact-adjusted immunity levels. We then compared these to case data from the 10 years following the seroprevalence studies to establish a contact-adjusted immunity threshold for elimination. We lastly combined a range of hypothetical immunity profiles with contact data from a wide range of socioeconomic and demographic settings to determine whether they would be sufficient for elimination. RESULTS: We found that contact-adjusted immunity levels were able to predict whether countries would experience outbreaks in the decade following the serological studies in about 70% of countries. The corresponding threshold level of contact-adjusted immunity was found to be 93%, corresponding to an average basic reproduction number of approximately 14. Testing different scenarios of immunity with this threshold level using contact studies from around the world, we found that 95% immunity would have to be achieved by the age of five and maintained across older age groups to guarantee elimination. This reflects a greater level of immunity required in 5-9-year-olds than established previously. CONCLUSIONS: The immunity levels we found necessary for measles elimination are higher than previous guidance. The importance of achieving high immunity levels in 5-9-year-olds presents both a challenge and an opportunity. While such high levels can be difficult to achieve, school entry provides an opportunity to ensure sufficient vaccination coverage. Combined with observations of contact patterns, further national and sub-national serological studies could serve to highlight key gaps in immunity that need to be filled in order to achieve national and regional measles elimination

    Vaccine herd effect

    Get PDF
    Vaccination ideally protects susceptible populations at high risk for complications of the infection. However, vaccines for these subgroups do not always provide sufficient effectiveness. The herd effect or herd immunity is an attractive way to extend vaccine benefits beyond the directly targeted population. It refers to the indirect protection of unvaccinated persons, whereby an increase in the prevalence of immunity by the vaccine prevents circulation of infectious agents in susceptible populations. The herd effect has had a major impact in the eradication of smallpox, has reduced transmission of pertussis, and protects against influenza and pneumococcal disease. A high uptake of vaccines is generally needed for success. In this paper we aim to provide an update review on the herd effect, focusing on the clinical benefit, by reviewing data for specific vaccines

    In Silico Prediction and Analysis of Caenorhabditis EF-hand Containing Proteins

    Get PDF
    Calcium (Ca+2) is a ubiquitous messenger in eukaryotes including Caenorhabditis. Ca+2-mediated signalling processes are usually carried out through well characterized proteins like calmodulin (CaM) and other Ca+2 binding proteins (CaBP). These proteins interact with different targets and activate it by bringing conformational changes. Majority of the EF-hand proteins in Caenorhabditis contain Ca+2 binding motifs. Here, we have performed homology modelling of CaM-like proteins using the crystal structure of Drosophila melanogaster CaM as a template. Molecular docking was applied to explore the binding mechanism of CaM-like proteins and IQ1 motif which is a ∼25 residues and conform to the consensus sequence (I, L, V)QXXXRXXXX(R,K) to serve as a binding site for different EF hand proteins. We made an attempt to identify all the EF-hand (a helix-loop-helix structure characterized by a 12 residues loop sequence involved in metal coordination) containing proteins and their Ca+2 binding affinity in Caenorhabditis by analysing the complete genome sequence. Docking studies revealed that F165, F169, L29, E33, F44, L57, M61, M96, M97, M108, G65, V115, F93, N104, E144 of CaM-like protein is involved in the interaction with IQ1 motif. A maximum of 170 EF-hand proteins and 39 non-EF-hand proteins with Ca+2/metal binding motif were identified. Diverse proteins including enzyme, transcription, translation and large number of unknown proteins have one or more putative EF-hands. Phylogenetic analysis revealed seven major classes/groups that contain some families of proteins. Various domains that we identified in the EF-hand proteins (uncharacterized) would help in elucidating their functions. It is the first report of its kind where calcium binding loop sequences of EF-hand proteins were analyzed to decipher their calcium affinities. Variation in Ca+2-binding affinity of EF-hand CaBP could be further used to study the behaviour of these proteins. Our analyses postulated that Ca+2 is likely to be key player in Caenorhabditis cell signalling

    New Structural and Functional Contexts of the Dx[DN]xDG Linear Motif: Insights into Evolution of Calcium-Binding Proteins

    Get PDF
    Binding of calcium ions (Ca2+) to proteins can have profound effects on their structure and function. Common roles of calcium binding include structure stabilization and regulation of activity. It is known that diverse families – EF-hands being one of at least twelve – use a Dx[DN]xDG linear motif to bind calcium in near-identical fashion. Here, four novel structural contexts for the motif are described. Existing experimental data for one of them, a thermophilic archaeal subtilisin, demonstrate for the first time a role for Dx[DN]xDG-bound calcium in protein folding. An integrin-like embedding of the motif in the blade of a Ξ²-propeller fold – here named the calcium blade – is discovered in structures of bacterial and fungal proteins. Furthermore, sensitive database searches suggest a common origin for the calcium blade in Ξ²-propeller structures of different sizes and a pan-kingdom distribution of these proteins. Factors favouring the multiple convergent evolution of the motif appear to include its general Asp-richness, the regular spacing of the Asp residues and the fact that change of Asp into Gly and vice versa can occur though a single nucleotide change. Among the known structural contexts for the Dx[DN]xDG motif, only the calcium blade and the EF-hand are currently found intracellularly in large numbers, perhaps because the higher extracellular concentration of Ca2+ allows for easier fixing of newly evolved motifs that have acquired useful functions. The analysis presented here will inform ongoing efforts toward prediction of similar calcium-binding motifs from sequence information alone
    • …
    corecore