15 research outputs found

    Hyperacute Directional Hearing and Phonotactic Steering in the Cricket (Gryllus bimaculatus deGeer)

    Get PDF
    Background: Auditory mate or prey localisation is central to the lifestyle of many animals and requires precise directional hearing. However, when the incident angle of sound approaches 0u azimuth, interaural time and intensity differences gradually vanish. This poses a demanding challenge to animals especially when interaural distances are small. To cope with these limitations imposed by the laws of acoustics, crickets employ a frequency tuned peripheral hearing system. Although this enhances auditory directionality the actual precision of directional hearing and phonotactic steering has never been studied in the behaviourally important frontal range. Principal Findings: Here we analysed the directionality of phonotaxis in female crickets (Gryllus bimaculatus) walking on an open-loop trackball system by measuring their steering accuracy towards male calling song presented at frontal angles of incidence. Within the range of 630u, females reliably discriminated the side of acoustic stimulation, even when the sound source deviated by only 1u from the animal’s length axis. Moreover, for angles of sound incidence between 1u and 6u the females precisely walked towards the sound source. Measuring the tympanic membrane oscillations of the front leg ears with a laser vibrometer revealed between 0u and 30u a linear increasing function of interaural amplitude differences with a slope of 0.4 dB/u. Auditory nerve recordings closely reflected these bilateral differences in afferent response latency and intensity that provide the physiological basis for precise auditory steering

    Matched Filters, Mate Choice and the Evolution of Sexually Selected Traits

    Get PDF
    Background Fundamental for understanding the evolution of communication systems is both the variation in a signal and how this affects the behavior of receivers, as well as variation in preference functions of receivers, and how this affects the variability of the signal. However, individual differences in female preference functions and their proximate causation have rarely been studied. Methodology/Principal Findings Calling songs of male field crickets represent secondary sexual characters and are subject to sexual selection by female choice. Following predictions from the “matched filter hypothesis” we studied the tuning of an identified interneuron in a field cricket, known for its function in phonotaxis, and correlated this with the preference of the same females in two-choice trials. Females vary in their neuronal frequency tuning, which strongly predicts the preference in a choice situation between two songs differing in carrier frequency. A second “matched filter” exists in directional hearing, where reliable cues for sound localization occur only in a narrow frequency range. There is a strong correlation between the directional tuning and the behavioural preference in no-choice tests. This second “matched filter” also varies widely in females, and surprisingly, differs on average by 400 Hz from the neuronal frequency tuning. Conclusions/Significance Our findings on the mismatch of the two “matched filters” would suggest that the difference in these two filters appears to be caused by their evolutionary history, and the different trade-offs which exist between sound emission, transmission and detection, as well as directional hearing under specific ecological settings. The mismatched filter situation may ultimately explain the maintenance of considerable variation in the carrier frequency of the male signal despite stabilizing selection
    corecore