891 research outputs found

    RECRUITMENT POTENTIAL: "SAILORS" WHO HAVE NEVER SEEN THE OCEAN

    Get PDF
    In 2017, the Navy began a transformation in recruiting, moving away from the generalist recruiter model to specialization in different areas of the recruiting process. In this thesis, the author uses recruit-level accession data from all U.S. military services, from 2010 to 2019, to document any changes in the Navy recruiting share relative to the other services, on the coasts and in the Midwest. Over the past decade, Navy recruiting has suffered in the Midwest relative to the other services, likely due to fewer resources used in that region. Using an event-study quantitative analysis approach, the author evaluates the effects of the transformation on the quality of Navy recruits in the five recruiting districts that have transitioned to the new model of recruiting during the time frame studied in the thesis. The findings indicate that the initial phases of the transformation faced difficulties in meeting the same percentage of quality recruits generated under the legacy model. To fully evaluate the impact of the policy shift, further analysis is needed to evaluate the other recruiting districts as they transition to the new model of recruiting.Lieutenant Commander, United States NavyApproved for public release. Distribution is unlimited

    Non-perturbative approaches to magnetism in strongly correlated electron systems

    Full text link
    The microscopic basis for the stability of itinerant ferromagnetism in correlated electron systems is examined. To this end several routes to ferromagnetism are explored, using both rigorous methods valid in arbitrary spatial dimensions, as well as Quantum Monte Carlo investigations in the limit of infinite dimensions (dynamical mean-field theory). In particular we discuss the qualitative and quantitative importance of (i) the direct Heisenberg exchange coupling, (ii) band degeneracy plus Hund's rule coupling, and (iii) a high spectral density near the band edges caused by an appropriate lattice structure and/or kinetic energy of the electrons. We furnish evidence of the stability of itinerant ferromagnetism in the pure Hubbard model for appropriate lattices at electronic densities not too close to half-filling and large enough UU. Already a weak direct exchange interaction, as well as band degeneracy, is found to reduce the critical value of UU above which ferromagnetism becomes stable considerably. Using similar numerical techniques the Hubbard model with an easy axis is studied to explain metamagnetism in strongly anisotropic antiferromagnets from a unifying microscopic point of view.Comment: 11 pages, Latex, and 6 postscript figures; Z. Phys. B, in pres

    Hadronic Production of Colored SUSY Particles with Electroweak NLO Contributions

    Full text link
    We consider the production of squarks and gluinos at hadronic colliders. An overview over the class of processes is given. We investigate in detail the tree-level and higher order EW contributions to the cross sections. Special care has to be taken to obtain infrared finite observables. We study numerically stop--anti-stop and squark--gluino production at the LHC.Comment: 3 pages, 2 figures; To appear in the proceedings of 16th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY08), Seoul, Korea, 16-21 Jun 200

    Grounding Verbs of Motion in Natural Language Commands to Robots

    Get PDF
    To be useful teammates to human partners, robots must be able to follow spoken instructions given in natural language. An important class of instructions involve interacting with people, such as “Follow the person to the kitchen” or “Meet the person at the elevators.” These instructions require that the robot fluidly react to changes in the environment, not simply follow a pre-computed plan. We present an algorithm for understanding natural language commands with three components. First, we create a cost function that scores the language according to how well it matches a candidate plan in the environment, defined as the log-likelihood of the plan given the command. Components of the cost function include novel models for the meanings of motion verbs such as “follow,” “meet,” and “avoid,” as well as spatial relations such as “to” and landmark phrases such as “the kitchen.” Second, an inference method uses this cost function to perform forward search, finding a plan that matches the natural language command. Third, a high-level controller repeatedly calls the inference method at each timestep to compute a new plan in response to changes in the environment such as the movement of the human partner or other people in the scene. When a command consists of more than a single task, the controller switches to the next task when an earlier one is satisfied. We evaluate our approach on a set of example tasks that require the ability to follow both simple and complex natural language commands. Keywords: Cost Function; Spatial Relation; State Sequence; Edit Distance; Statistical Machine TranslationUnited States. Office of Naval Research (Grant MURI N00014-07-1-0749

    Toward understanding natural language directions

    Get PDF
    Speaking using unconstrained natural language is an intuitive and flexible way for humans to interact with robots. Understanding this kind of linguistic input is challenging because diverse words and phrases must be mapped into structures that the robot can understand, and elements in those structures must be grounded in an uncertain environment. We present a system that follows natural language directions by extracting a sequence of spatial description clauses from the linguistic input and then infers the most probable path through the environment given only information about the environmental geometry and detected visible objects. We use a probabilistic graphical model that factors into three key components. The first component grounds landmark phrases such as "the computers" in the perceptual frame of the robot by exploiting co-occurrence statistics from a database of tagged images such as Flickr. Second, a spatial reasoning component judges how well spatial relations such as "past the computers" describe a path. Finally, verb phrases such as "turn right" are modeled according to the amount of change in orientation in the path. Our system follows 60% of the directions in our corpus to within 15 meters of the true destination, significantly outperforming other approaches.United States. Office of Naval Research (MURI N00014-07-1-0749

    LDA+DMFT computation of the electronic spectrum of NiO

    Full text link
    The electronic spectrum, energy gap and local magnetic moment of paramagnetic NiO are computed by using the local density approximation plus dynamical mean-field theory (LDA+DMFT). To this end the noninteracting Hamiltonian obtained within the local density approximation (LDA) is expressed in Wannier functions basis, with only the five anti-bonding bands with mainly Ni 3d character taken into account. Complementing it by local Coulomb interactions one arrives at a material-specific many-body Hamiltonian which is solved by DMFT together with quantum Monte-Carlo (QMC) simulations. The large insulating gap in NiO is found to be a result of the strong electronic correlations in the paramagnetic state. In the vicinity of the gap region, the shape of the electronic spectrum calculated in this way is in good agreement with the experimental x-ray-photoemission and bremsstrahlung-isochromat-spectroscopy results of Sawatzky and Allen. The value of the local magnetic moment computed in the paramagnetic phase (PM) agrees well with that measured in the antiferromagnetic (AFM) phase. Our results for the electronic spectrum and the local magnetic moment in the PM phase are in accordance with the experimental finding that AFM long-range order has no significant influence on the electronic structure of NiO.Comment: 15 pages, 6 figures, 1 table; published versio

    Momentum-resolved spectral functions of SrVO3_3 calculated by LDA+DMFT

    Full text link
    LDA+DMFT, the merger of density functional theory in the local density approximation and dynamical mean-field theory, has been mostly employed to calculate k-integrated spectra accessible by photoemission spectroscopy. In this paper, we calculate k-resolved spectral functions by LDA+DMFT. To this end, we employ the Nth order muffin-tin (NMTO) downfolding to set up an effective low-energy Hamiltonian with three t_2g orbitals. This downfolded Hamiltonian is solved by DMFT yielding k-dependent spectra. Our results show renormalized quasiparticle bands over a broad energy range from -0.7 eV to +0.9 eV with small ``kinks'', discernible in the dispersion below the Fermi energy.Comment: 21 pages, 8 figure

    Toward a script theory of guidance in computer-supported collaborative learning

    Get PDF
    This article presents an outline of a script theory of guidance for computer-supported collaborative learning (CSCL). With its four types of components of internal and external scripts (play, scene, role, and scriptlet) and seven principles, this theory addresses the question how CSCL practices are shaped by dynamically re-configured internal collaboration scripts of the participating learners. Furthermore, it explains how internal collaboration scripts develop through participation in CSCL practices. It emphasizes the importance of active application of subject matter knowledge in CSCL practices, and it prioritizes transactive over non-transactive forms of knowledge application in order to facilitate learning. Further, the theory explains how external collaboration scripts modify CSCL practices and how they influence the development of internal collaboration scripts. The principles specify an optimal scaffolding level for external collaboration scripts and allow for the formulation of hypotheses about the fading of external collaboration scripts. Finally, the article points towards conceptual challenges and future research questions

    Hopping on the Bethe lattice: Exact results for densities of states and dynamical mean-field theory

    Get PDF
    We derive an operator identity which relates tight-binding Hamiltonians with arbitrary hopping on the Bethe lattice to the Hamiltonian with nearest-neighbor hopping. This provides an exact expression for the density of states (DOS) of a non-interacting quantum-mechanical particle for any hopping. We present analytic results for the DOS corresponding to hopping between nearest and next-nearest neighbors, and also for exponentially decreasing hopping amplitudes. Conversely it is possible to construct a hopping Hamiltonian on the Bethe lattice for any given DOS. These methods are based only on the so-called distance regularity of the infinite Bethe lattice, and not on the absence of loops. Results are also obtained for the triangular Husimi cactus, a recursive lattice with loops. Furthermore we derive the exact self-consistency equations arising in the context of dynamical mean-field theory, which serve as a starting point for studies of Hubbard-type models with frustration.Comment: 14 pages, 9 figures; introduction expanded, references added; published versio
    • …
    corecore