
Grounding Verbs of Motion in Natural
Language Commands to Robots

Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas Roy

Abstract To be useful teammates to human partners, robots must be able to follow
spoken instructions given in natural language. An important class of instructions in-
volve interacting with people, such as “Follow the person to the kitchen” or “Meet
the person at the elevators.” These instructions require that the robot fluidly react
to changes in the environment, not simply follow a pre-computed plan. We present
an algorithm for understanding natural language commands with three components.
First, we create a cost function that scores the language according to how well it
matches a candidate plan in the environment, defined as the log-likelihood of the
plan given the command. Components of the cost function include novel models for
the meanings of motion verbs such as “follow,” “meet,” and “avoid,” as well as spa-
tial relations such as “to” and landmark phrases such as “the kitchen.” Second, an
inference method uses this cost function to perform forward search, finding a plan
that matches the natural language command. Third, a high-level controller repeat-
edly calls the inference method at each timestep to compute a new plan in response
to changes in the environment such as the movement of the human partner or other
people in the scene. When a command consists of more than a single task, the con-
troller switches to the next task when an earlier one is satisfied. We evaluate our
approach on a set of example tasks that require the ability to follow both simple and
complex natural language commands.

1 Introduction
In order to achieve higher levels of autonomy, robots need to be able to interact
naturally with people in unstructured environments. One of the most natural ways
to instruct robots is to use spoken natural language, enabling robots such as those

Thomas Kollar and Nicholas Roy
Computer Science and Artificial Intelligence Lab., Massachusetts Institute of Technology, 77 Mas-
sachusetts Ave. Cambridge, MA 02139. e-mail: tkollar@csail.mit.edu, nickroy@csail.mit.edu

Stefanie Tellex and Deb Roy
MIT Media Lab. 75 Amherst St. Cambridge, MA, 02139 e-mail: stefie10@media.mit.edu,
dkroy@media.mit.edu

The first two authors contributed equally to this paper

1



2 Kollar, Tellex, Roy, and Roy

(a) Robotic Wheelchair (b) Robotic Forklift

Fig. 1: Two systems that rely on natural language interaction: an autonomous wheelchair and a
robotic forklift.

shown in Figure 1 to be commanded easily. For example, a patient in a robotic
wheelchair might say, “Follow the nurse to the exit,” or the operator of a robotic
forklift might say, “Meet me in receiving at 3pm.”

To explore the types of natural language commands that people would like to
use, we collected an open-ended corpus by asking people to imagine commands
they might give to a robot in different scenarios. Sample commands from this cor-
pus included “Meet the two people at the elevators and bring them to 32-331,” and
“Follow Tom when you see him.” Many of the commands in the corpus included
verbs relating to people’s motion (or verbs of motion); these verbs are the focus of
this paper.

Understanding verbs of motion requires reasoning about the path of both the per-
son and the robot, converting the spoken words in the instructions into low level
actions. Previous approaches [Wei et al., 2009, Kollar et al., 2010] converted a natu-
ral language instruction into a fixed sequence of actions in the environment and sent
this plan to the robot for execution. However, when following a pre-computed plan,
the robot lacks the ability to respond to a dynamic environment: if the person takes
a different route to the exit, the robot is unable to follow.

We present an approach to solving this problem by defining a cost function over
actions the robot can take and incrementally satisfying parts of the command. The
system involves three components: a cost function, an inference algorithm, and a
controller. Similar to Kollar et al. [2010], our cost function is the log-likelihood of
the actions given the language. We expand this cost function in order to handle plans
that involve the motion of other people in the environment. The inference algorithm
quickly maximizes over plans, allowing us to connect the meaning of each word or
phrase in the sentence to the environment in a domain-independent way. Finally, a
controller enables us to re-plan at each timestep and also to determine when to move
on to the next component of the language.

We evaluate our approach on a corpus of directives that was constructed around
combinations of five motion verbs: “go,” “meet,” “follow,” “bring,” and “avoid.” For
each verb, we collected an evaluation corpus that consisted of approximately ten



Grounding Verbs of Motion in Natural Language Commands to Robots 3

primitive natural language directives such as, “Follow the person to the kitchen.”
and compound commands involving several phrases such as, “Follow the person
to the kitchen. Then move towards the bathroom. Next go down the hall to the
lounge.” For each directive, we created a set of initial conditions in a simulator,
situating a virtual robot and person in a map of a real office environment. A human
controlled a simulated robot to obey the command, which was then used to train
and evaluate models of the meanings of verbs. We evaluated the performance of
our model on a held-out test set of the corpus. The system successfully followed
most of the commands in our corpus, showing our approach captured much of the
compositional structure of these natural language commands.

2 Related Work
There is been a rich body of work building language understanding systems for
robots. Previous work focused on natural language route instructions [Kollar et al.,
2010, Matuszek et al., 2010, MacMahon et al., 2006, Shimizu and Haas, 2009],
using a natural language command to infer a path through an unchanging environ-
ment. Vogel and Jurafsky [2010] used reinforcement learning to automatically learn
a model for understanding route instructions. In contrast, our work focuses on situ-
ations in which the environment changes over time, and the robot must adapt. Hsiao
et al. [2008] and Skubic et al. [2004] presented frameworks for robotic language
understanding in which the actions themselves are responsive to changes in the en-
vironment. Our approach creates an entirely new plan in response to these changes,
meaning that the system’s repertoire of actions can be simpler.

There has been a variety of work in transferring action policies between a human
and a robot. In imitation learning, the goal is to create a system that can watch
a teacher perform an action, and then reproduce that action [Kruger et al., 2007,
Chernova and Veloso, 2009, Schaal et al., 2003, Ekvall and Kragic, 2008]. Some
systems accept input and corrections from the teacher in the form of language to
correct the plan [Nicolescu and Mataric, 2003]. Rybski et al. [2007] developed an
imitation learning system that learns from a combination of imitation of the human
teacher, as well as natural language input. Our work differs in that the system must
infer an action from the natural language commands, rather than from watching the
teacher perform an action. The system is trained off-line, and the task of the robot
is to respond on-line to the natural language command.

The problem of predicting the cost function for a task in a domain has received
attention in the inverse optimal control and inverse reinforcement learning domains.
Abbeel and Ng [2004] and Peters and Kober [2009] have shown that learning from
demonstrations of trajectories could be improved by inferring the cost function,
rather than recovering the policy directly from the demonstrated trajectories. Sil-
ver et al. [2009] showed that an autonomous vehicle could recover a global cost
function from local examples of driving. While these classes of algorithms are sim-
ilar in spirit to ours, the assumption in previous work was that the cost functions
must be stationary over the environment and do not depend on an external signal,
which in our case is the instruction from the human teammate.

Partially Observable Markov Decision Processes (POMDPs) are a planning
framework that have been used for robot control [Kaelbling et al., 1998]. In order to



4 Kollar, Tellex, Roy, and Roy

use a POMDP to control a robot to follow an instruction, the natural language com-
mand specifies a reward function. However, in the standard formulation, the reward
function depends only on the current state and action. This is insufficient to capture
verbs like “bring” or “meet” which require access to the history of states. Instead,
we extend the approaches of Toussaint and Storkey [2006] and Attias [2003], which
develop graphical models analogous to MDPs and POMDPs. By defining the cost
function as a log-likelihood, we are free to reason using the entire history of states
and factor the distribution into independent components in order to learn the model
with less training data.

3 Technical Approach
To convert from natural language expressions into robot behavior, we take as input
a natural language command and output the sequence of actions that minimizes the
cost function C that corresponds to the command. If C is a cost function, si are states
of the world, L is the natural language command and Φ is a correspondence variable
that determines the mapping between the language and states in the world, then the
problem at each timestep is to find a sequence of states and Φ that minimizes the
cost function:

argmin
s1...sT ,Φ

C(s1 . . .sT , |Φ ,L) . (1)

We define a cost function as the log-likelihood of the actions given the language
and the correspondence variable:

C(s1 . . .sT |Φ ,L) ,− log(p(s1 . . .sT |Φ ,L)) (2)

Conditioning on L introduces a problem of data sparsity; natural language in-
structions can have almost arbitrary structure and almost arbitrary vocabulary. How-
ever, we have shown previously [Kollar et al., 2010] that we can use a shallow se-
mantic structure called the spatial description clause (SDC) to parse the instructions
L into a set of separable instruction clauses L = {SDC1 . . .SDCK}. SDCs enable us
to factor the distribution and learn each factor separately. Each SDC corresponds to
a single task that the robot must take in following the text of the instructions, and
consists of a figure fk, verb vk, spatial relation srk, and landmark lk, any of which
can be unspecified. Both the figure and landmark may refer to the path of an object
or person, the spatial relation describes the general extent of the task, and the verb
specifies how the task should take place. For example, for the command “Meet the
person,” the figure is implicitly “(you)”, the verb is “Meet,” the spatial relation is
implicit, and the landmark is “the person.” A parse tree for the command, “Meet the
person at the kitchen.” showing a sequence of two SDCs is shown in Figure 2.

The system automatically extracts a sequence of SDCs from the natural language
command. Since each SDC generally corresponds to individual tasks that the robot
should execute, we can assume that each SDC is independent given the entire state
sequence, thus enabling us to factor the distribution as



Grounding Verbs of Motion in Natural Language Commands to Robots 5

S

SDC

SDC

V

L

SR

L

Meet

the person

at

the kitchen

Fig. 2: SDCs for the sentence “Meet the person at the kitchen.” Here, S is the entire sentence, SDC
is a spatial description clause, F is the figure, V is the verb, SR is the spatial relation, and L is a
landmark.

p(s1 . . .sT |Φ ,L) ∝

K

∏
k=1

p(SDCk|sφk)p(s1 . . .sT ), (3)

where the probability of SDCk is

p(SDCk|sφk) = p( fk|sφk)·p(srk|sφk)·p(vk|sφk)·p(lk|sφk) (4)

φk assigns parts of the states from s1:T to the corresponding fields of SDCk.
s1 . . .sT describes a state sequence of the robot as it follows the instructions;
p(vk|sφk) is the probability of a verb in the kth SDC given a piece of the trajec-
tory; p(srk|sφk) is the probability of a particular spatial relation and landmark given
a piece of the trajectory occurring in a specific location of the environment; p( fk|sφk)
and p(lk|sφk) are the probabilities of the respective noun phrases given an object tra-
jectory sequence picked out by sφk . The prior p(s1, . . .sT ) enforces the sequential
nature of the robot and person paths as well as the stationarity of the objects. We
define the prior so that, for example, state sequences that reverse direction abruptly
are lower probability.

Finally, we must define the state space and provide groundings for each term in
the factorization. In order to understand verbs like “follow,” the state must include
both the robot position as well as the person’s position. In order to understand land-
marks like “the kitchen,” the state must also include the location of objects in the
environment over time. Using this cost function, the robot can evaluate how well
candidate paths match the natural language command. The key components of this
distribution model are summarized in Table 1.

4 Model Learning
To implement our model, we must ground each of the components of Equation 4.
The following sections describe how we model the figure, verb, spatial relation, and
landmark from the SDC.



6 Kollar, Tellex, Roy, and Roy

States The state si includes the current location of the robot and the person
along with the location of detected objects, each of which addition-
ally has a class name. A sequence of robot positions is defined as r
and a sequence of person poses is defined as p.

Observations The observations are the observed natural language in the form of a
sequence of SDCs, L = {SDC1 . . .SDCK}.

Correspondence The correspondence variable Φ encodes the bindings between the
state space and the language. In particular, it encodes the physical
objects that bind to the landmark phrase of each SDC, as well as the
sequence of states that binds to an entire SDC.

Table 1: Components of our model.

4.1 Verbs
Verbs are one of the most complex and important parts of natural language direc-
tives. They define events that take place between one or more entities in the world,
imposing a rich internal structure. Syntactically, they form the core of the sentence,
relating the rest of the phrases together to form a coherent event.

For SDCs containing a transitive verb of motion such as “follow,” we can decom-
pose the motion trajectories of the person following and the person being followed:

p(follow = True|r = robot poses, p = person poses) (5)
= p(follow = True| f1(r, p) . . . fN(r, p)) (6)

The figure, in this case a sequence of robot poses r, and the landmark, in this case
a sequence of person poses p, are given to the model as a sequence of locations
tagged with times and are converted into a set of features fi(r, p). Given a training
corpus and this set of features, a classifier is learned for each verb that describes the
probability that this verb exists (follow = True) given the features of the two paths.
This distribution needs to be conditioned on potentially the entire state sequence in
order to capture the internal structure of a verb. For example, “meet” is not just the
robot being near the person at a particular state. Rather, the robot must start out far
away from the person, and then end up close to them. The history of states is needed
to make this determination.

In order to compute features fi(r, p), the figure and the landmark paths must be
converted to a set of features. In order to convert these paths to a set of features,
we take a sequence of windows and compute low-level features with respect to
these windows. Each window describes a part of both paths corresponding to 1
second of time. Each of the low-level features gk(r, p, t) is Boolean and is computed
with respect to the robot positions r and person positions p paths for a one-second
window with center at time t. This results in a vector of feature values, one value
for each time 0 < t < T . The low-level Boolean features can be seen in Table 2.
Additional features are generated that involve the conjunction of two of the low-
level features (e.g., gk(r, p, t) = gi(r, p, t)∧ g j(r, p, t)), where i, j are from Table 2
and ∧ is the logical and operation.



Grounding Verbs of Motion in Natural Language Commands to Robots 7

Low-Level Features

g1(r, p, t) = MovingTowards(landmark, figure, time) g2(r, p, t) = MovingTowards(figure, landmark, time)
g3(r, p, t) = IsVisible(figure, landmark, time) g4(r, p, t) = IsClose(figure, landmark, time)
g5(r, p, t) = IsMoving(landmark, time) g6(r, p, t) = IsMoving(figure, time)

Table 2: The set of low-level features used to learn the probability of a verb. MovingTowards(x,y, t)
is true when x is moving towards the current location of y at time t. IsClose(x,y, t) is true when
the distance between x and y is less than a set threshold at time t. IsMoving(x, t) is true when x is
moving at time t. IsVisible(x,y, t) is true when x is visible from y at time t.

Finally, we take the mean of the of each of these Boolean vectors in order to
compute the features used in the learning:

fi(r, p) =
1
T

T

∑
t=1

gi(r, p, t). (7)

A corpus of labeled examples for each verb, together with these features fi(r, p),
were used to train a naive Bayes classifier. Performance curves for the verbs trained
on a corpus of labeled examples is shown in Figure 3, showing that standard ma-
chine learning techniques suffices to learn good verb models. In addition, since the
features used to learn the verbs are scale-invariant (Equation 7) and we have shown
that the verb classifier generalizes to new paths, we should expect that our algo-
rithm is able to generalize to new environments. Verbs can be composed with any of
the spatial relations and landmarks, according to Equation 4, which allows for the
composition of novel commands that the robot has never seen before.

4.2 Figure, Spatial Relations and Landmarks
To ground spatial relations and landmarks, we use the models described in Kollar
et al. [2010]. We review the work briefly here for completeness.

Spatial relations are words such as “to,” “past,” and “across,” that describe the
motion of an object in relation to a landmark. The second term in Equation 4,
p(srk|sφk) corresponds to a model for the meaning of spatial prepositions. The sys-
tem models this distribution via supervised classifier trained on labeled examples of
each preposition. Each distribution takes as input the geometry of a path and a land-
mark object, computes a set of features and outputs a probability that the situation
can be described using that spatial relation. In our previous work we showed the fea-
sibility of using these models of spatial relations to follow route directions [Kollar
et al., 2010].

Both the figure and landmark (the first and last parts of Equation 4) correspond to
the probability of seeing a textual label such as “kitchen” given a particular object in
the environment and the labels of other visible objects in the environment: p(li|sφk).
We estimate the probability of a phrase given observed objects in the environment
using co-occurrence statistics learned from tags for over a million images down-
loaded from the Flickr website [Kollar et al., 2010, Kollar and Roy, 2009]. Using
this corpus, the robot can infer that if it detects a refrigerator at a particular location,
it is likely to be in a kitchen, enabling the robot to estimate the location of novel
landmark words in the text.



8 Kollar, Tellex, Roy, and Roy

Fig. 3: ROC curves showing the performance of distributions for various verbs when they are
treated as classifiers. TP is true positive rate, and FP is false positive rate.

By combining spatial relations and landmarks that were not in the training
dataset, we can compose the two in novel ways. Since the spatial relation/landmark
component relies only on the local context of the robot and scale-invariant features
describing the relationship of the robot path to the geometry of the landmark, we
can expect the approach to generalize to new situations in new environments.

5 Inference
Given a natural language command, the goal of inference is to compute the best
state sequence and assignment of the language onto the states (or sequence of states)
according to the cost function at the current time.

In order to perform this inference, we use forward search at each timestep to
find the sequence of actions that minimizes the learned cost function. In general, the
robot will have executed a sequence of states up to the current time, and will thus
have a state history H as well as the future state sequence. The goal of inference
is then to compute the minimal cost state sequence and to infer the correspondence
variable Φ :

argmin
s1...sT ,Φ

C(H;s1 . . .sT |Φ ,L) (8)

Searching deeply enough to find a low cost plan is key to understanding verbs
of motion. A key optimization that makes this possible is our choice of action rep-
resentation. Rather than using low-level actions in a grid-map, we represent actions
as motions between locations in a topological road map that is automatically gen-
erated from a gridmap of the environment. The topological roadmap corresponding
to a SLAM-generated gridmap [Grisetti et al., 2007] of an office environment is
shown in Figure 4. Junction and end points in the road map are shown as circles,
and correspond to locations where paths diverge or dead-end. We refer to an edge
in this graph as a pathlet. By considering moves in the topological map rather than
in a grid map, the system can search farther into the future for a plan that minimizes
the cost. Candidate plans are generated using breadth-first search, starting from the
current state.

Pseudocode for this approach can be seen in Algorithm 1. Initially, the algorithm
computes the set of paths for the a sequence of robot poses ri and a sequence of
a person’s poses pi corresponding to breadth-first search, extending pathlets until
some depth or number of paths is achieved. The algorithm then iterates through these
paths and, depending on type of the landmark field (either an object or a person),



Grounding Verbs of Motion in Natural Language Commands to Robots 9

Fig. 4: The automatically generated skeleton of the map, with junction points and end points la-
beled. We refer to an edge in this graph as a pathlet.

Algorithm 1 Inference(SDC1 . . .SDCK , H)
min cost←MAX INT
min state seq← []
p1 . . . pN ,r1 . . .rN ← generate breadthfirst paths(H[end])
for pi,ri ∈ {(p1,r1) . . .(pN ,rN)} do

cost← 0;objs = []
for SDC j ∈ {SDC1, . . .SDCK} do

if l j is an object then
cost = cost+minok ,pathlet on r j − log p(SDC j|ok,pathlet)
objs← [objs,omin]

end if
if l j is a person then

cost = cost− log p(SDC j|H, pi,ri)
objs← [objs, []]

end if
end for
if cost− log p(ri, pi,objs) < min cost then

min cost = cost− log p(ri, pi,objs)
min state seq = [pi,ri,objs]

end if
end for
return min state seq, min cost

grounds the probability of an SDC in different ways. In the case of an object we
take the set of pathlets on the robot path and maximize over candidate objects ok
and pathlets. Thus, if some part of the path looks like “past the bathroom,” then the
score will be high. Although, we could look at larger parts of the path, this would
have been computationally intractable. The approximation via pathlets enables us to
cache the probabilities along pathlet edges for each planning step.



10 Kollar, Tellex, Roy, and Roy

In case the SDC refers to a person, we take the entire history H and planned path
of the person pi and robot ri and compute the probability of an SDC given this pair
of paths. Partitioning the path in a computationally efficient way was out of scope
for this work. Finally, we add in the prior over the state sequence p(ri, pi,objs) and
store the minimum cost and corresponding state sequence.

This inference algorithm enables the system to efficiently find a plan correspond-
ing to the natural language command.

6 Controller
In order to respond to the actions of people in the environment, we must use

a controller to determine a current plan as the state of the world changes. Since
elements of the state space are not under our control, a plan made at the beginning
of time will not remain valid if the person does something unanticipated. In the case
of “Follow the person,” we may have very little idea exactly where the person will
go. Because the system needs to respond in real-time, the inference will only have
time to search a limited distance in the future.

The result of this is that not every SDC will have a corresponding path in either
the path history or in the planned future path, especially for complex commands
such as “Go to the restroom, and then follow the person to the kitchen.” To solve
this problem, the system sequentially applies the SDCs to a sequence of states. At
the beginning, it considers state sequences using only the first SDC and executes the
best plan at that time (e.g., c = 1). When the algorithm does not re-plan, it executes
the action that gets the robot to the next state in the current best plan (e.g., by calling
achieve state on si). When the cost of the plan begins to monotonically increase over
the set of the K most recent plans (e.g., an inflection point has been reached), the
algorithm will move to the next SDC by incrementing c. This heuristic means our
algorithm will move from an SDC such as “to the kitchen” to the next SDC when the
best future plan looks less like “to the kitchen” than the history. In order to ensure
that the entire plan is consistent with the language, the algorithm will consider both
the current SDC and the previous SDCs when ranking a sequence of states. This
process repeats until the robot has executed all of the SDCs, at which point the al-

Algorithm 2 Controller(SDC1 . . .SDCN)
i← 0;c← 1;H← [s0] ; costs← []
while all SDCs are not satisfied do

if is replan timestep then
s1 . . .sT ,cost← argmin

s1...sT ,Φ
C(H,s1 . . .sT |Φ ,SDC1 . . .SDCc)

costs← [costs,cost] ; i← 0;
end if
if costs[end] < mincosts[end−K : end−1] then

c← c+1
end if
achieve state(si)
H← [H,si]
i← i+1

end while



Grounding Verbs of Motion in Natural Language Commands to Robots 11

gorithm terminates. Pseudocode is presented in Algorithm 2 and a worked example
is shown in Figure 5.

We found that in practice searching between 400 and 1000 paths gave good re-
sults in a reasonable amount of time. Without using a verb model, the model gen-
erates a plan in less than a second; when using verb models, the model generates
a plan approximately every five seconds. Performance could easily be improved by
parallelizing the system to run on multiple CPU cores.

Input Language: “Go to the restroom and then follow the person.”
Parsed SDCs: SDC(v=“Go”, sr=“to”, l=“the restroom”), SDC(v=“Follow, l=“the person”)

Step 1: Evaluate first SDC; c=1
SDC(v=“Go”, sr=“to”, l=“the restroom”)

p = .0085 p = .000000017

Re-plan: Goto step 1 and run inference every 1 second

Inflection Point Robot arrives at the restroom; the probability of the first SDC goes down.
Step 2: Evaluate both SDCs; c=2

SDC(v=“Go”, sr=“to”, l=“the restroom”), SDC(v=“Follow, l=“the person”)

p = 0.810 p = 0.005

Finish: Re-plan, executing step 2, until the last SDC has been satisfied.

Fig. 5: Worked example of the system in action for the command “Go to the restroom, and then
follow the person,” showing high- and low- scoring examples. The language is first parsed into
two SDCs and we start out with just the first SDC (c = 1 from Algorithm 2). While the plans look
like the first SDC, the robot will keep executing the associated action. After the robot goes “to the
bathroom,” the system detects that all future paths are worse examples of this SDC and it adds the
second SDC “follow the person”. Until another inflection point happens, the robot recomputes its
plan and executes it.

7 Evaluation
In order to evaluate our system, we created a corpus pertaining to spatial motion
verbs. We focused on a set of five verbs: “bring,” “meet,” “avoid,” “follow,” and
“go.” We created about ten natural language commands that used each verb. In ad-



12 Kollar, Tellex, Roy, and Roy

dition we created ten compound commands that involved at least two different verbs,
such as “Follow the person to the kitchen. Then move toward the bathroom. Next
go down the hall to the lounge.” For each command we created one or more scenar-
ios. A scenario consists of an initial location for the robot and the simulated person
(if any) in a map of a real office environment, as well as a behavior model for the
person.

To collect the corpus for each scenario, an annotator controls the virtual robot
to follow the command. For example, for “Follow the person to the kitchen,” a sce-
nario would have the robot and the person starting in a particular location in the
environment, and the person moving along a pre-recorded trajectory to the kitchen.
A human annotator then completes the scenario by moving the robot in a way that
obeys the natural language command. Thus the corpus consists of natural language
commands, together with examples of a person’s behavior when following these
commands in a simulated environment. We use this corpus for training generic mod-
els of the meanings of verbs, as well as evaluating our system.

To evaluate our system using held-out data from this corpus, we used our infer-
ence algorithm to control the robot’s activity, given the same information a person
had when creating the corpus. When the behavior of the robot was judged to have
followed the natural language command, then we counted it as correct. When any
part of the robot’s behavior did not correspond to the command, then the behavior
was judged to be incorrect. These results are shown in Table 3.

Go Follow Avoid Meet Bring Overall

Hand 90% 80% 78% 70% 29% 69%
Auto - - - - - 60%
Compound - - - - - 60%

Table 3: Percentage of time that our algorithm followed the language exactly for various command
sets. Hand shows an experiment with 46 commands and annotated object detections. Auto shows
results for 10 commands and a fully automatic object detector. Compound shows results for 10
compound commands involving two or more verbs with annotated object detections.

Most of the analysis used a map populated by hand with the labels of certain
classes of objects in order to eliminate a dependency on noisy object detection. To
include the effects of potentially noisy object recognition, we also present results
for creating this semantic map automatically. For the automatically generated de-
tections, we used the wheelchair robot depicted in Figure 1(a), equipped with a
camera and LIDAR to drive around the environment. Then we used an object detec-
tor [Felzenszwalb et al., 2008] to detect six types of objects to seed the map. Figure 6
shows the object detector automatically detecting a microwave in the environment.

We also quantitatively compared the robot’s behavior to the behavior of a human
annotator who controlled the robot. To do this, we had two different human anno-
tators control the robot for the same scenario. We also had our system control the
robot. Each example in the corpus is associated with two values: the difference be-
tween our system and a human annotator, and the difference between the two human
annotators. We plot these values as a scatter plot in Figure 7.



Grounding Verbs of Motion in Natural Language Commands to Robots 13

Fig. 6: An object detection of a microwave from the environment.

For all verbs, the human-human edit distance correlates with the human-robot
edit distance. For verbs such as “go” and “follow,” there is less variation in correct
paths and all edit distances are small. For “avoid,” there are many possible paths, so
the edit distances are larger for both the human and robot, and there is therefore less
of a correlation between edit distance and example correctness.

The verb “bring” performs much worse than the others in our test set. This dispar-
ity occurs because “bring” events are longer and contain significant internal struc-
ture. Our algorithm cannot search deeply enough to find a complete “bring” event in
the time it has, meaning that it cannot choose the optimal plan. Optimizing and par-
allelizing our system to enable it to search deeper in the plan space could alleviate
this problem.

8 Experimental Insights / Future Work
Some parts of the language were not currently handled by our decomposition into
SDCs, such as events where the robot must recognize a time or a situation that is
happening and conditionally execute the corresponding actions such as, “At noon,
come to my office and lead the visitor to the kitchen.” In addition, there are actions
that must be repeated until another event occurs, such as “Make sure no one touches
my project while I’m at group meeting.” Extending the system handle language like
this requires the ability to recognize events and react accordingly.

Table 3 shows that our inference process performs significantly worse for verbs
with a complex internal event representation than for other verbs. With the verb
“bring,” this loss in performance happens because the cost function must reflect
whether the robot has first approached and collected the object or person to be
brought to another location. After the collection, the cost function must move the
robot to a destination. As a result, the cost function is non-Markov. This problem
might be overcome by adding one bit of memory but inferring from a set of natural
language instructions that extra bits of memory are needed, and for what tasks, is an
open problem.

9 Contributions
The contribution of this work is a planning framework that enables robots to under-
stand verbs of motion. The system follows natural language commands by finding
a plan that minimizes a cost function which relates the language to the plan. We



14 Kollar, Tellex, Roy, and Roy

Fig. 7: Robot-annotator and inter-annotator edit distance for four of the modeled verbs. On the
vertical axis is the agreement between the test robot annotations and those given by another human
annotator. On the horizontal axis is the agreement between the path taken by our algorithm and a
human. Both are measured by mapping each path onto a skeleton of the map, taking each location
in the map as if they were a character and computing the edit distance between two paths (strings).
In this graph, points above the line indicate that the robot matches the ground-truth path better
(according to edit-distance) than another human performing in the same scenario.

provide models for the meanings of spatial motion verbs such as “follow,” “avoid,”
“meet,” “bring,” and “go.” The system composes these models with other parts of the
language such as landmarks and spatial relations using spatial description clauses, a
shallow semantic structure that corresponds to independence assumptions in the lan-
guage that can be used in the model. The system re-plans at each timestep, enabling
it to respond dynamically to changes in the environment. It handles compound com-
mands by looking for an inflection point in the cost function to decide when to move
from one clause to the next. Our framework enables robots to understand verbs of
motion in natural language commands and demonstrates that novel behavior can
be generated in a closed-loop manner for a large number of natural language com-
mands.

Acknowledgments
We are grateful for the support of the Office of Naval Research, which supported
Thomas Kollar and Stefanie Tellex under MURI N00014-07-1-0749.



Grounding Verbs of Motion in Natural Language Commands to Robots 15

References

Yuan Wei, Emma Brunskill, Thomas Kollar, and Nick Roy. Where to go: Interpreting natural
directions using global inference. In ICRA, 2009.

Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas Roy. Toward understanding natural lan-
guage directions. In Proceedings of HRI, 2010.

C. Matuszek, D. Fox, and K. Koscher. Following directions using statistical machine translation.
In Proceedings of HRI, 2010.

Matt MacMahon, Brian Stankiewicz, and Benjamin Kuipers. Walk the talk: Connecting language,
knowledge, and action in route instructions. Proceedings of the National Conference on Artifi-
cial Intelligence, pages 1475—1482, 2006.

Nobuyuki Shimizu and Andrew Haas. Learning to follow navigational route instructions. In
IJCAI’09: Proceedings of the 21st international jont conference on Artifical intelligence, pages
1488–1493, San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.

Adam Vogel and Dan Jurafsky. Learning to follow navigational directions. In ACL ’10: Pro-
ceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages
806–814, Morristown, NJ, USA, 2010. Association for Computational Linguistics.

Kai-yuh Hsiao, Stefanie Tellex, Soroush Vosoughi, Rony Kubat, and Deb Roy. Object schemas for
grounding language in a responsive robot. Connect. Sci, 20(4):253–276, 2008.

M. Skubic, D. Perzanowski, S. Blisard, A. Schultz, W. Adams, M. Bugajska, and D. Brock.
Spatial language for human-robot dialogs. Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, IEEE Transactions on, 34(2):154–167, 2004. ISSN 1094-6977. doi:
10.1109/TSMCC.2004.826273.

V. Kruger, D. Kragic, A. Ude, and C. Geib. The meaning of action: A review on action recognition
and mapping. Advanced Robotics, 21(13), 2007.

S. Chernova and M. Veloso. Interactive policy learning through confidence-based autonomy. JAIR,
34(1):1–25, 2009.

Stefan Schaal, Auke Ijspeert, and Aude Billard. Computational approaches to motor learning by
imitation. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1431):
537–547, March 2003. ISSN 0962-8436. PMID: 12689379 PMCID: 1693137.

S. Ekvall and D. Kragic. Robot learning from demonstration: a task-level planning approach.
International Journal of Advanced Robotic Systems, 5(3), 2008.

M. Nicolescu and M. Mataric. Natural methods for robot task learning: instructive demonstrations,
generalization and practice. In Proc. AAMAS, 2003.

P.E. Rybski, K. Yoon, J. Stolarz, and M.M. Veloso. Interactive robot task training through dialog
and demonstration. In Proceedings of HRI, page 56. ACM, 2007.

P. Abbeel and A. Ng. Apprenticeship learning via inverse reinforcement learning. In Proc. ICML,
2004.

J. Peters and J. Kober. Using reward-weighted imitation for robot reinforcement learning. In Proc.
Inter. Symp. on Approximate Dynamic Programming and Reinforcement Learning, 2009.

David Silver, J. Andrew Bagnell, and Anthony Stentz. Perceptual interpretation for autonomous
navigation through dynamic imitation learning. In Proc. ISRR, 2009.

Leslie P. Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in par-
tially observable stochastic domains. Artificial Intelligence, 101(1-2), 1998.

M. Toussaint and A. Storkey. Probabilistic inference for solving discrete and continuous state
Markov Decision Processes. In Proceedings of the 23rd international conference on Machine
learning, page 952. ACM, 2006.

H. Attias. Planning by probabilistic inference. In Proceedings of the 9th International Workshop
on Artificial Intelligence and Statistics, 2003.

Thomas Kollar and Nick Roy. Utilizing object-object and object-scene context when planning to
find things. In IEEE International Conference on Robotics and Automation, 2009.

G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping with Rao-
Blackwellized particle filters. IEEE Transactions on Robotics, 23(1):34–46, 2007.

P. Felzenszwalb, D. Mcallester, and D. Ramanan. A discriminatively trained, multiscale, de-
formable part model. In CVPR-2008, June 2008.

View publication statsView publication stats

https://www.researchgate.net/publication/228755892



