33 research outputs found

    Diversity and roles of (t)RNA ligases

    Full text link

    The Cellulases Endoglucanase I and Cellobiohydrolase II of Trichoderma reesei Act Synergistically To Solubilize Native Cotton Cellulose but Not To Decrease Its Molecular Size

    No full text
    Degradation of cotton cellulose by Trichoderma reesei endoglucanase I (EGI) and cellobiohydrolase II (CBHII) was investigated by analyzing the insoluble cellulose fragments remaining after enzymatic hydrolysis. Changes in the molecular-size distribution of cellulose after attack by EGI, alone and in combination with CBHII, were determined by size exclusion chromatography of the tricarbanilate derivatives. Cotton cellulose incubated with EGI exhibited a single major peak, which with time shifted to progressively lower degrees of polymerization (DP; number of glucosyl residues per cellulose chain). In the later stages of degradation (8 days), this peak was eventually centered over a DP of 200 to 300 and was accompanied by a second peak (DP, (apprx=)15); a final weight loss of 34% was observed. Although CBHII solubilized approximately 40% of bacterial microcrystalline cellulose, the cellobiohydrolase did not depolymerize or significantly hydrolyze native cotton cellulose. Furthermore, molecular-size distributions of cellulose incubated with EGI together with CBHII did not differ from those attacked solely by EGI. However, a synergistic effect was observed in the reducing-sugar production by the cellulase mixture. From these results we conclude that EGI of T. reesei degrades cotton cellulose by selectively cleaving through the microfibrils at the amorphous sites, whereas CBHII releases soluble sugars from the EGI-degraded cotton cellulose and from the more crystalline bacterial microcrystalline cellulose

    Development and Validation of a Transcreener Assay for Detection of AMP- and GMP-Producing Enzymes

    No full text
    Screening of AMP- and GMP-producing enzymes such as phosphodiesterases (PDEs), ligases, and synthetases would be simplified by the ability to directly detect unmodified nucleoside monophosphates. To address this need, we developed polyclonal and monoclonal antibodies that recognize AMP and GMP with nanomolar sensitivity and high selectivity vs. the corresponding triphosphate and 3′,5′-cyclic monophosphate nucleotides that serve as substrates for many enzymes in these classes. One of these antibodies was used to develop a Transcreener® AMP/GMP assay with a far red fluorescence polarization (FP) readout. This polyclonal antibody exhibited extremely high selectivity, with IC50 ratios of 6,000 for ATP/AMP, 3,810 for cAMP/AMP, and 6,970 for cGMP/GMP. Standard curves mimicking enzymatic conversion of cAMP, cGMP, and ATP to the corresponding monophosphates yielded Z′ values of >0.85 at 10% conversion. The assay reagents were shown to be stable for 24 h at room temperature, both before and after dispensing. The Transcreener AMP/GMP FP assay was used for enzymatic detection of cGMP- and cAMP-dependent PDEs 4A1A, 3A, and 9A2 and ATP-dependent ligases, acetyl CoA synthetase, and ubiquitin-activating enzyme (UBE1). Shifts of >100 mP were observed in the linear part of the progress curves for all enzymes tested, and the PDE isoforms exhibited the expected substrate and inhibitor selectivity. These studies demonstrate that direct immunodetection of AMP and GMP is a flexible, robust enzyme assay method for diverse AMP- and GMP-producing enzymes. Moreover, it eliminates many of the shortcomings of other methods including the need for fluorescently labeled substrates, the low signal:background inherent in substrate depletion assays, and the potential for interference with coupling enzymes
    corecore