89 research outputs found

    Estimates of foil thickness, signal, noise, and nuclear heating of imaging bolometers for ITER

    Get PDF
    Imaging bolometers have been studied for ITER to serve as a complementary diagnostic to the resistive bolometers for the measurement of radiated power. Two tangentially viewing InfraRed imaging Video Bolometers (IRVB) could be proposed for an ITER equatorial port, one having a view of the entire plasma cross-section (core viewing) and one tilted down 43 degrees from the horizontal to view the divertor (divertor viewing). The IRVBs have 7 cm (horizontal) by 9 cm (vertical) Pt sensor foils, 6 mm × 6 mm apertures, 15 × 20 pixels and focal lengths of 7.8 cm and 21 cm, respectively. Using SANCO and SOLPS models for a 840 m3 plasma radiating 67.3 MW, synthetic images from the IRVBs are calculated to estimate the maximum signal strengths to be 246 W/m2 and 62 W/m2, respectively. We propagate the X-ray energy spectra from the models through the synthetic diagnostics to give the photon energy spectrum for each IRVB pixel, which are used to calculate the fraction of the power absorbed by the foil as a function of foil thickness. Using a criteria of >95% absorbed power fraction, we selected foil thicknesses of 30 μm and 10 μm, respectively. We used these thicknesses and assumed IR systems having 105 fps, 1024×1280 pixels and sensitivities of 15 mK, to calculate the IRVB sensitivities of 3.19 W/m2 and 1.05 W/m2, and signal to noise ratios of 77 and 59, respectively. Using the Monte Carlo Nuclear Particle code we calculated for the core viewing IRVB the foil heating by neutrons to be 1.0 W/m2 and by gammas to be 117 W/m2. This indicates that countermeasures may be needed to remove the nuclear heating signal

    Delayed neuronal cell death in brainstem after transient brainstem ischemia in gerbils

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of the lack of reproducible brainstem ischemia models in rodents, the temporal profile of ischemic lesions in the brainstem after transient brainstem ischemia has not been evaluated intensively. Previously, we produced a reproducible brainstem ischemia model of Mongolian gerbils. Here, we showed the temporal profile of ischemic lesions after transient brainstem ischemia.</p> <p>Results</p> <p>Brainstem ischemia was produced by occlusion of the bilateral vertebral arteries just before their entry into the transverse foramina of the cervical vertebrae of Mongolian gerbils. Animals were subjected to brainstem ischemia for 15 min, and then reperfused for 0 d (just after ischemia), 1 d, 3 d and 7 d (n = 4 in each group). Sham-operated animals (n = 4) were used as control. After deep anesthesia, the gerbils were perfused with fixative for immunohistochemical investigation. Ischemic lesions were detected by immunostaining for microtubule-associated protein 2 (MAP2). Just after 15-min brainstem ischemia, ischemic lesions were detected in the lateral vestibular nucleus and the ventral part of the spinal trigeminal nucleus, and these ischemic lesions disappeared one day after reperfusion in all animals examined. However, 3 days and 7 days after reperfusion, ischemic lesions appeared again and clusters of ionized calcium-binding adapter molecule-1(IBA-1)-positive cells were detected in the same areas in all animals.</p> <p>Conclusion</p> <p>These results suggest that delayed neuronal cell death took place in the brainstem after transient brainstem ischemia in gerbils.</p

    Effects of single therapeutic doses of promethazine, fexofenadine and olopatadine on psychomotor function and histamine-induced wheal- and flare-responses: a randomized double-blind, placebo-controlled study in healthy volunteers

    Get PDF
    Since most first-generation antihistamines have undesirable sedative effects on the central nervous systems (CNS), newer (second-generation) antihistamines have been developed to improve patients’ quality of life. However, there are few reports that directly compare the antihistaminic efficacy and impairment of psychomotor functions. We designed a double-blind, placebo controlled, crossover study to concurrently compare the clinical effectiveness of promethazine, a first-generation antihistamine, and fexofenadine and olopatadine, second-generation antihistamines, by measuring their potency as peripheral inhibitors of histamine-induced wheal and flare. Further, we investigated their sedative effects on the CNS using a battery of psychomotor tests. When single therapeutic doses of fexofenadine (60 mg), olopatadine (5 mg) and promethazine (25 mg) were given in a double-blind manner to 24 healthy volunteers, all antihistamines produced a significant reduction in the wheal and flare responses induced by histamine. In the comparison among antihistamines, olopatadine showed a rapid inhibitory effect compared with fexofenadine and promethazine, and had a potent effect compared with promethazine. In a battery of psychomotor assessments using critical flicker fusion, choice reaction time, compensatory tracking, rapid visual information processing and a line analogue rating scale as a subjective assessment of sedation, promethazine significantly impaired psychomotor function. Fexofenadine and olopatadine had no significant effect in any of the psychomotor tests. Promethazine, fexofenadine and olopatadine did not affect behavioral activity, as measured by wrist actigraphy. These results suggest that olopatadine at a therapeutic dose has greater antihistaminergic activity than promethazine, and olopatadine and fexofenadine did not cause cognitive or psychomotor impairment

    Parathyroid hormone 1 (1-34) acts on the scales and involves calcium metabolism in goldfish

    Get PDF
    金沢大学環日本海域環境研究センターThe effect of fugu parathyroid hormone 1 (fugu PTH1) on osteoblasts and osteoclasts in teleosts was examined with an assay system using teleost scale and the following markers: alkaline phosphatase (ALP) for osteoblasts and tartrate-resistant acid phosphatase (TRAP) for osteoclasts. Synthetic fugu PTH1 (1-34) (100 pg/ml-10 ng/ml) significantly increased ALP activity at 6 h of incubation. High-dose (10 ng/ml) fugu PTH1 significantly increased ALP activity even after 18 h of incubation. In the case of TRAP activity, fugu PTH1 did not change at 6 h of incubation, but fugu PTH1 (100 pg/ml-10 ng/ml) significantly increased TRAP activity at 18 h. Similar results were obtained for human PTH (1-34), but there was an even greater response with fugu PTH1 than with human PTH. In vitro, we demonstrated that both the receptor activator of the NF-κB ligand in osteoblasts and the receptor activator NF-κB mRNA expression in osteoclasts increased significantly by fugu PTH1 treatment. In an in vivo experiment, fugu PTH1 induced hypercalcemia resulted from the increase of both osteoblastic and osteoclastic activities in the scale as well as the decrease of scale calcium contents after fugu PTH1 injection. In addition, an in vitro experiment with intramuscular autotransplanted scale indicated that the ratio of multinucleated osteoclasts/mononucleated osteoclasts in PTH-treated scales was significantly higher than that in the control scales. Thus, we concluded that PTH acts on osteoblasts and osteoclasts in the scales and regulates calcium metabolism in goldfish. © 2011 Elsevier Inc. All rights reserved

    Overview of transport and MHD stability study: focusing on the impact of magnetic field topology in the Large Helical Device

    Get PDF
    The progress in the understanding of the physics and the concurrent parameter extension in the large helical device since the last IAEA-FEC, in 2012 (Kaneko O et al 2013 Nucl. Fusion 53 095024), is reviewed. Plasma with high ion and electron temperatures (Ti(0) ~ Te(0) ~ 6 keV) with simultaneous ion and electron internal transport barriers is obtained by controlling recycling and heating deposition. A sign flip of the nondiffusive term of impurity/momentum transport (residual stress and convection flow) is observed, which is associated with the formation of a transport barrier. The impact of the topology of three-dimensional magnetic fields (stochastic magnetic fields and magnetic islands) on heat momentum, particle/impurity transport and magnetohydrodynamic stability is also discussed. In the steady state operation, a 48 min discharge with a line-averaged electron density of 1 × 1019 m−3 and with high electron and ion temperatures (Ti(0) ~ Te(0) ~ 2 keV), resulting in 3.36 GJ of input energy, is achieved

    Review of Journal of Cardiovascular Magnetic Resonance 2013

    Full text link

    Prediction of the drying shrinkage of alkali-activated materials using artificial neural networks

    No full text
    Alkali-activated materials (AAMs) are qualitatively and quantitatively evaluated with an emphasis on the ultimate drying shrinkage. We systematically evaluated AAMs based on the mix design and curing conditions, utilizing a total of 452 AAM mixtures extracted from 44 papers. Finally, a predictive model for the ultimate drying shrinkage of AAMs was constructed using an artificial neural network (ANN) with high accuracy, in which the reactivity of binder, geopolymer paste volume, liquid-to-binder ratio, alkali activator modulus, aggregate volumetric ratio, curing temperature, relative humidity and specimen size were set as inputs. This model shows great generality by compiling various AAM mixtures and is easy-handling without preparation of samples for acquiring specific properties. Moreover, the efficiency of three commonly used models for predicting the drying shrinkage-the Bazant-Baweja model, Gardner and Lockman model, and multi-linear regression model-were evaluated and compared to the proposed ANN model, revealing a better prediction performance of ANN model. This study will advance the understanding of the drying shrinkage behaviors of AAMs and provide practical guidelines for designing AAM mixtures with high durability
    corecore