68 research outputs found

    Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells.</p> <p>Methods</p> <p>Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF). DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting.</p> <p>Results</p> <p>Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK) and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC), whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K), TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR) transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells.</p> <p>Conclusions</p> <p>While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116 cells. In these cells, neurotensin-induced activation of ERK and stimulation of DNA synthesis was PKC-dependent, whereas activation of the PI3K/Akt pathway was mediated by stimulation of metalloproteinases and subsequent transactivation of the EGFR. Thus, the data show that the signalling mechanisms mediating the effects of neurotensin involve multiple pathways and are cell-dependent.</p

    Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells

    Get PDF
    The anti-cancer effects of metformin, the most widely used drug for type 2 diabetes, alone or in combination with ionizing radiation were studied with MCF-7 human breast cancer cells and FSaII mouse fibrosarcoma cells. Clinically achievable concentrations of metformin caused significant clonogenic death in cancer cells. Importantly, metformin was preferentially cytotoxic to cancer stem cells relative to non-cancer stem cells. Metformin increased the radiosensitivity of cancer cells in vitro, and significantly enhanced the radiation-induced growth delay of FSaII tumors (s.c.) in the legs of C3H mice. Both metformin and ionizing radiation activated AMPK leading to inactivation of mTOR and suppression of its downstream effectors such as S6K1 and 4EBP1, a crucial signaling pathway for proliferation and survival of cancer cells, in vitro as well as in the in vivo tumors. Conclusion: Metformin kills and radiosensitizes cancer cells and eradicates radioresistant cancer stem cells by activating AMPK and suppressing mTOR

    Effect of a new CCK-A receptor antagonist, dexloxiglumide, on the exocrine pancreas in the rat.

    No full text
    The effect of dexloxiglumide, a new potent cholecystokinin (CCK) antagonist, on pancreatic enzyme secretion and growth was studied in the rat. Pancreatic exocrine secretion was studied both in vitro (isolated and perfused pancreatic segments) and in vivo (anaesthetized animals with cannulation of the common bile duct) whereas the trophic effect was investigated after short-term (7 days) administration of the CCK-agonist, caerulein, or camostate (a potent trypsin inhibitor), with or without dexloxiglumide. CCK-8 stimulated amylase release from in vitro pancreatic segments in a concentration-dependent manner. Dexloxiglumide displaced the concentration response curves to CCK-8 to the right without affecting the maximum response, suggesting a competitive antagonism. The Schild plot analysis of data gave a straight line with a slope (0.90 +/- 0.36) not significantly different from unity. The calculated pA2 for dexloxiglumide was 6.41 +/- 0.38. In vivo experiments confirmed results from in vitro studies since intravenous dexloxiglumide reduced pancreatic exocrine secretion induced by submaximal CCK-8 stimulation (0.5 nmol/kg/h) in a dose-dependent manner, the ID50 being 0.64 mg/kg. Both exogenous and endogenous (released by camostate) CCK increased the weight of the pancreas, the total pancreatic protein and DNA, trypsin and amylase content. Dexloxiglumide (25 mg/kg), administered together with caerulein (1 microgram/kg), reduced the peptide-induced increase in pancreatic weight, protein and enzyme content. Similarly, when dexloxiglumide was given together with camostate (200 mg/kg), all the observed changes were reduced by concomitant administration of the antagonist. These results demonstrate the ability of dexloxiglumide to antagonize the effects of CCK on pancreatic secretion and growth, suggesting that this compound is a potent and selective antagonist of CCK-A-receptors in the pancreas

    Protein Kinase D Signaling: Multiple Biological Functions in Health and Disease

    No full text
    • …
    corecore