1,613 research outputs found
Two-band Fluctuation Exchange Study on the Superconductivity of -(BEDT-TTF)ICl under High Pressure
We study the pressure dependence of the superconducting transition
temperature of an organic superconductor -(BEDT-TTF)ICl by
applying the fluctuation exchange method to the Hubbard model on the original
two-band lattice at 3/4-filling rather than the single band model in the strong
dimerization limit. Our study is motivated by the fact that hopping parameters
evaluated from a first-principles study suggest that the dimerization of the
BEDT-TTF molecules is not so strong especially at high pressure. Solving the
linearized Eliashberg's equation, a d-wave-like superconducting state
with realistic values of is obtained in a pressure regime somewhat higher
than the actual experimental result. These results are similar to those
obtained within the single band model in the previous study by Kino {\it et
al}. We conclude that the resemblance to the dimer limit is due to a
combination of a good Fermi surface nesting, a large density of states near the
Fermi level, and a moderate dimerization, which cooperatively enhance electron
correlation effects and also the superconducting .Comment: 6 pages, 8 figure
Phase Diagram of -(BEDT-TTF)ICl under High Pressure Based on the First-Principles Electronic Structure
We present a theoretical study on the superconductivity of
-(BEDT-TTF)ICl at 14.2 K under a high hydrostatic
pressure recently found, which is the highest among organic superconductors. In
the present work, we study an effective model using the fluctuation-exchange
(FLEX) approximation based on the results of first-principles calculation. In
the obtained phase diagram, the superconductivity with -like symmetry
is realized next to the antiferromagnetic phase, as a result of the
one-dimensional to two-dimensional crossover driven by the pressure.Comment: 4 pages, 3 figures. accepted for publication in J. Phys. Soc. Jpn.
errors correcte
Discovery of a wandering radio jet base after a large X-ray flare in the blazar Markarian 421
We investigate the location of the radio jet bases ("radio cores") of blazars
in radio images, and their stationarity by means of dense very long baseline
interferometry (VLBI) observations. In order to measure the position of a radio
core, we conducted 12 epoch astrometric observation of the blazar Markarian 421
with the VLBI Exploration of Radio Astrometry at 22 GHz immediately after a
large X-ray flare, which occurred in the middle of 2011 September. For the
first time, we find that the radio core is not stationary but rather changes
its location toward 0.5 mas downstream. This angular scale corresponds to the
de-projected length of a scale of Schwarzschild radii (Rs) at the
distance of Markarian~421. This radio-core wandering may be a new type of
manifestation associated with the phenomena of large X-ray flares.Comment: 6 pages, 4 figures, 1 table, has been published in ApJ Letter
Frustrated Spin System in theta-(BEDT-TTF)_2RbZn(SCN)_4
The origin of the spin gap behavior in the low-temperature dimerized phase of
theta-(BEDT-TTF)_2RbZn(SCN)_4 has been theoretically studied based on the
Hartree-Fock approximation for the on-site Coulomb interaction at absolute
zero. Calculations show that, in the parameter region considered to be relevant
to this compound, antiferromagnetic ordering is stabilized between dimers
consisting of pairs of molecules coupled with the largest transfer integral.
Based on this result an effective localized spin 1/2 model is constructed which
indicates the existence of the frustration among spins. This frustration may
result in the formation of spin gap.Comment: 4 pages, 5 figures, to be published in J. Phys. Soc. Jpn. 67 (1998)
no.
- …